N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers

. 2020 Mar 27 ; 25 (7) : . [epub] 20200327

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32230728

Grantová podpora
SVV 260 547 Ministerstvo Školství, Mládeže a Tělovýchovy
20-19638Y Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund
Project title: Structure-based design of new antitubercular medicines CELSA

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.

Zobrazit více v PubMed

World Health Organization . Global Tuberculosis Report 2019. World Health Organization; Geneva, Switzerland: Oct 17, 2019. CC BY-NC-SA 3.0 IGO.

von Reyn C.F., Waddell R.D., Eaton T., Arbeit R.D., Maslow J.N., Barber T.W., Brindle R.J., Gilks C.F., Lumio J., Lahdevirta J., et al. Isolation of Mycobacterium Avium Complex from Water in the United States, Finland, Zaire, and Kenya. J. Clin. Microbiol. 1993;31:3227–3230. doi: 10.1128/JCM.31.12.3227-3230.1993. PubMed DOI PMC

Tortoli E. Impact of Genotypic Studies on Mycobacterial Taxonomy: The New Mycobacteria of the 1990s. Clin. Microbiol. Rev. 2003;16:319–354. doi: 10.1128/CMR.16.2.319-354.2003. PubMed DOI PMC

Johnson M.M., Odell J.A. Nontuberculous Mycobacterial Pulmonary Infections. J. Thorac. Dis. 2014;6:210–220. doi: 10.3978/j.issn.2072-1439.2013.12.24. PubMed DOI PMC

Yeager R.L., Munroe W.G., Dessau F.I. Pyrazinamide (Aldinamide) in the Treatment of Pulmonary Tuberculosis. Am. Rev. Tuberc. 1952;65:523–546. PubMed

Zhang Y., Shi W., Zhang W., Mitchison D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol. Spectr. 2014;2:479–491. doi: 10.1128/microbiolspec.MGM2-0023-2013. PubMed DOI

Petrella S., Gelus-Ziental N., Maudry A., Laurans C., Boudjelloul R., Sougakoff W. Crystal Structure of the Pyrazinamidase of Mycobacterium Tuberculosis: Insights into Natural and Acquired Resistance to Pyrazinamide. PLOS ONE. 2011;6:e15785. doi: 10.1371/journal.pone.0015785. PubMed DOI PMC

Zitko J., Dolezal M. Old Drugs and New Targets as an Outlook for the Treatment of Tuberculosis. Curr. Med. Chem. 2018;25:5142–5167. doi: 10.2174/0929867324666170920154325. PubMed DOI

Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R., Jr. Pyrazinoic Acid and Its N-Propyl Ester Inhibit Fatty Acid Synthase Type I in Replicating Tubercle Bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC

Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R., Jr. Pyrazinamide Inhibits the Eukaryotic-Like Fatty Acid Synthetase I (FASI) of Mycobacterium Tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI

Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., 3rd, Wang H., Zhang W., Zhang Y. Pyrazinamide Inhibits Trans-Translation in Mycobacterium Tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC

Sun Q., Li X., Perez L.M., Shi W., Zhang Y., Sacchettini J.C. The Molecular Basis of Pyrazinamide Activity on Mycobacterium Tuberculosis Pand. Nat. Commun. 2020;11:339. doi: 10.1038/s41467-019-14238-3. PubMed DOI PMC

Kim H., Shibayama K., Rimbara E., Mori S. Biochemical Characterization of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium Tuberculosis H37rv and Inhibition of Its Activity by Pyrazinamide. PLOS ONE. 2014;9:e100062. doi: 10.1371/journal.pone.0100062. PubMed DOI PMC

He L., Cui P., Shi W., Li Q., Zhang W., Li M., Zhang Y. Pyrazinoic Acid Inhibits the Bifunctional Enzyme (Rv2783) in Mycobacterium Tuberculosis by Competing with Tmrna. Pathogens. 2019;8:230. doi: 10.3390/pathogens8040230. PubMed DOI PMC

Zhang S., Chen J., Shi W., Cui P., Zhang J., Cho S., Zhang W., Zhang Y. Mutation in Clpc1 Encoding an Atp-Dependent Atpase Involved in Protein Degradation Is Associated with Pyrazinamide Resistance in Mycobacterium Tuberculosis. Emerg. Microbes Infect. 2017;6:e8. doi: 10.1038/emi.2017.1. PubMed DOI PMC

Sheen P., Requena D., Gushiken E., Gilman R.H., Antiparra R., Lucero B., Lizarraga P., Cieza B., Roncal E., Grandjean L., et al. A Multiple Genome Analysis of Mycobacterium Tuberculosis Reveals Specific Novel Genes and Mutations Associated with Pyrazinamide Resistance. BMC Genomics. 2017;18:769. doi: 10.1186/s12864-017-4146-z. PubMed DOI PMC

Njire M., Wang N., Wang B., Tan Y., Cai X., Liu Y., Mugweru J., Guo J., Hameed H.M.A., Tan S., et al. Pyrazinoic Acid Inhibits a Bifunctional Enzyme in Mycobacterium Tuberculosis. Antimicrob Agents Chemother. 2017;61:e00070–e00117. doi: 10.1128/AAC.00070-17. PubMed DOI PMC

Gopal P., Gruber G., Dartois V., Dick T. Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends Pharmacol. Sci. 2019;40:930–940. doi: 10.1016/j.tips.2019.10.005. PubMed DOI PMC

Via L.E., Savic R., Weiner D.M., Zimmerman M.D., Prideaux B., Irwin S.M., Lyon E., O’Brien P., Gopal P., Eum S., et al. Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infect. Dis. 2015;1:203–214. doi: 10.1021/id500028m. PubMed DOI PMC

Correa M.F., Fernandes J.P. Pyrazinamide and Pyrazinoic Acid Derivatives Directed to Mycobacterial Enzymes against Tuberculosis. Curr. Protein. Pept. Sci. 2016;17:213–219. doi: 10.2174/1389203716666151002114839. PubMed DOI

Cynamon M.H., Gimi R., Gyenes F., Sharpe C.A., Bergmann K.E., Han H.J., Gregor L.B., Rapolu R., Luciano G., Welch J.T. Pyrazinoic Acid Esters with Broad Spectrum in Vitro Antimycobacterial Activity. J. Med. Chem. 1995;38:3902–3907. doi: 10.1021/jm00020a003. PubMed DOI

Cynamon M.H., Klemens S.P., Chou T.S., Gimi R.H., Welch J.T. Antimycobacterial Activity of a Series of Pyrazinoic Acid Esters. J. Med. Chem. 1992;35:1212–1215. doi: 10.1021/jm00085a007. PubMed DOI

Bergmann K.E., Cynamon M.H., Welch J.T. Quantitative Structure-Activity Relationships for the in Vitro Antimycobacterial Activity of Pyrazinoic Acid Esters. J. Med. Chem. 1996;39:3394–3400. doi: 10.1021/jm950538t. PubMed DOI

Simoes M.F., Valente E., Gomez M.J., Anes E., Constantino L. Lipophilic Pyrazinoic Acid Amide and Ester Prodrugs Stability, Activation and Activity against M. Tuberculosis. Eur. J. Pharm. Sci. 2009;37:257–263. doi: 10.1016/j.ejps.2009.02.012. PubMed DOI

Semelkova L., Jandourek O., Konecna K., Paterova P., Navratilova L., Trejtnar F., Kubicek V., Kunes J., Dolezal M., Zitko J. 3-Substituted N-Benzylpyrazine-2-Carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules. 2017;22:495. doi: 10.3390/molecules22030495. PubMed DOI PMC

Zitko J., Jand’ourek O., Paterova P., Navratilova L., Kunes J., Vinsova J., Dolezal M. Design, Synthesis and Antimycobacterial Activity of Hybrid Molecules Combining Pyrazinamide with a 4-Phenylthiazol-2-Amine Scaffold. Medchemcomm. 2018;9:685–696. doi: 10.1039/C8MD00056E. PubMed DOI PMC

Vale N., Ferreira A., Matos J., Fresco P., Gouveia M.J. Amino Acids in the Development of Prodrugs. Molecules. 2018;23:2318. doi: 10.3390/molecules23092318. PubMed DOI PMC

Ibrahim M.A., Panda S.S., Birs A.S., Serrano J.C., Gonzalez C.F., Alamry K.A., Katritzky A.R. Synthesis and Antibacterial Evaluation of Amino Acid-Antibiotic Conjugates. Bioorg. Med. Chem. Lett. 2014;24:1856–1861. doi: 10.1016/j.bmcl.2014.01.065. PubMed DOI

Pochopin N.L., Charman W.N., Stella V.J. Amino-Acid Derivatives of Dapsone as Water-Soluble Prodrugs. Int. J. Pharm. 1995;121:157–167. doi: 10.1016/0378-5173(95)00005-4. DOI

Kushner S., Dalalian H., Sanjurjo J.L., Bach F.L., Safir S.R., Smith V.K., Williams J.H. Experimental Chemotherapy of Tuberculosis. Ii. The Synthesis of Pyrazinamides and Related Compounds1. J. Am. Chem. Soc. 1952;74:3617–3621. doi: 10.1021/ja01134a045. DOI

Badie M.F., Azab M.S. Synthesis and Antimicrobial Activity of Some Pyrazine- and Disubstituted Pyrazine-Amino Acid Derivatives. Alex. J. Pharm. Sci. 1991;5:176–180.

Pinheiro A.C., Kaiser C.R., Lourenco M.C.S., de Souzaa M.V.N., Wardell S.M.S.V., Wardell J.L. Synthesis and in Vitro Activity Towards Mycobacterium Tuberculosis of l-Serinyl Ester and Amino Derivatives of Pyrazinoic Acid. Chemin- 2007;2007:180–184. doi: 10.3184/030823407×200001. DOI

Panda S.S., Girgis A.S., Mishra B.B., Elagawany M., Devarapalli V., Littlefield W.F., Samir A., Fayad W., Fawzy N.G., Srour A.M., et al. Synthesis, Computational Studies, Antimycobacterial and Antibacterial Properties of Pyrazinoic Acid-Isoniazid Hybrid Conjugates. RSC Advances. 2019;9:20450–20462. doi: 10.1039/C9RA03380G. PubMed DOI PMC

Makino E., Iwasaki N., Yagi N., Ohashi T., Kato H., Ito Y., Azuma H. Studies on Antiallergic Agents. I. Synthesis and Antiallergic Activity of Novel Pyrazine Derivatives. Chem. Pharm. Bull. (Tokyo) 1990;38:201–207. doi: 10.1248/cpb.38.201. PubMed DOI

Himaja M., Venkataramana M., Shaifali M., Kilaru J.P., Ranjitha A., Saisaraswathi V., Asif K. Ultrasound-Mediated Synthesis Pyrazine-2-Carboxylamino Acids and Dipeptides as Potent Insecticidal and Anthelmintic Agents. Int. J. Res. Ayurveda Pharm. 2010;1:180–185.

Moreira W., Santhanakrishnan S., Ngan G.J.Y., Low C.B., Sangthongpitag K., Poulsen A., Dymock B.W., Dick T. Towards Selective Mycobacterial Clpp1p2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrob. Agents Chemother. 2017;61:e02307–e02316. doi: 10.1128/AAC.02307-16. PubMed DOI PMC

Larsen E.M., Johnson R.J. Microbial Esterases and Ester Prodrugs: An Unlikely Marriage for Combating Antibiotic Resistance. Drug Dev. Res. 2019;80:33–47. doi: 10.1002/ddr.21468. PubMed DOI PMC

Li J., Sha Y. A Convenient Synthesis of Amino Acid Methyl Esters. Molecules. 2008;13:1111–1119. doi: 10.3390/molecules13051111. PubMed DOI PMC

Amblard M., Fehrentz J.A., Martinez J., Subra G. Methods and Protocols of Modern Solid Phase Peptide Synthesis. Mol. Biotechnol. 2006;33:239–254. doi: 10.1385/MB:33:3:239. PubMed DOI

Hill T.A., Lohman R.J., Hoang H.N., Nielsen D.S., Scully C.C., Kok W.M., Liu L., Lucke A.J., Stoermer M.J., Schroeder C.I., et al. Cyclic Penta- and Hexaleucine Peptides without N-Methylation Are Orally Absorbed. ACS Med. Chem. Lett. 2014;5:1148–1151. doi: 10.1021/ml5002823. PubMed DOI PMC

Yamada S., Hongo C., Yoshioka R., Chibata I. Method for the Racemization of Optically-Active Amino-Acids. J. Org. Chem. 1983;48:843–846. doi: 10.1021/jo00154a019. DOI

Paul R., Anderson G.W. N,N‘-Carbonyldiimidazole, a New Peptide Forming Reagent. J. Am. Chem. Soc. 1960;82:4596–4600. doi: 10.1021/ja01502a038. DOI

E-Abadelah M.M., Sabri S.S., Jarrar A.A., Zarga M.H.A. Chiroptical Properties of N-(2-Pyrazinoyl)-A-Amino-Esters, -Aziridines, and Related Compounds. J. Chem. Soc. Perkin Trans. 1. 1979:2881–2885. doi: 10.1039/p19790002881. DOI

Popovic S., Bieraugel H., Detz R.J., Kluwer A.M., Koole J.A., Streefkerk D.E., Hiemstra H., van Maarseveen J.H. Epimerization-Free C-Terminal Peptide Activation. Chemistry. 2013;19:16934–16937. doi: 10.1002/chem.201303347. PubMed DOI

Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, Low-Technology Mic Determination with Clinical Mycobacterium Tuberculosis Isolates by Using the Microplate Alamar Blue Assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC

Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B. Phenotypic and Genomic Comparison of Mycobacterium Aurum and Surrogate Model Species to Mycobacterium Tuberculosis: Implications for Drug Discovery. BMC Genomics. 2017;18:530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC

Chaturvedi V., Dwivedi N., Tripathi R.P., Sinha S. Evaluation of Mycobacterium Smegmatis as a Possible Surrogate Screen for Selecting Molecules Active against Multi-Drug Resistant Mycobacterium Tuberculosis. J. Gen. Appl. Microbiol. 2007;53:333–337. doi: 10.2323/jgam.53.333. PubMed DOI

Heinrichs M.T., May R.J., Heider F., Reimers T., SK B.S., Peloquin C.A., Derendorf H. Mycobacterium Tuberculosis Strains H37ra and H37rv Have Equivalent Minimum Inhibitory Concentrations to Most Antituberculosis Drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI

Yamamoto S., Toida I., Watanabe N., Ura T. In Vitro Antimycobacterial Activities of Pyrazinamide Analogs. Antimicrob. Agents Chemother. 1995;39:2088–2091. doi: 10.1128/AAC.39.9.2088. PubMed DOI PMC

Vandal O.H., Nathan C.F., Ehrt S. Acid Resistance in Mycobacterium Tuberculosis. J. Bacteriol. 2009;191:4714–4721. doi: 10.1128/JB.00305-09. PubMed DOI PMC

den Hertog A.L., Menting S., Pfeltz R., Warns M., Siddiqi S.H., Anthony R.M. Pyrazinamide Is Active against Mycobacterium Tuberculosis Cultures at Neutral Ph and Low Temperature. Antimicrob. Agents Chemother. 2016;60:4956–4960. doi: 10.1128/AAC.00654-16. PubMed DOI PMC

Bansa-Mutalik R., Nikaido H. Mycobacterial Outer Membrane Is a Lipid Bilayer and the Inner Membrane Is Unusually Rich in Diacyl Phosphatidylinositol Dimannosides. Proc. Natl. Acad. Sci. USA. 2014;111:4958–4963. doi: 10.1073/pnas.1403078111. PubMed DOI PMC

Chen H., Nyantakyi S.A., Li M., Gopal P., Aziz D.B., Yang T., Moreira W., Gengenbacher M., Dick T., Go M.L. The Mycobacterial Membrane: A Novel Target Space for Anti-Tubercular Drugs. Front. Microbiol. 2018;9:1627. doi: 10.3389/fmicb.2018.01627. PubMed DOI PMC

Molecular Operating Environment (MOE) Chemical Computing Group ULC, 1010 Sherbrooke St. West, Suite #910; Montreal, QC, Canada: 2019.

Palos I., Luna-Herrera J., Lara-Ramirez E.E., Loera-Piedra A., Fernandez-Ramirez E., Aguilera-Arreola M.G., Paz-Gonzalez A.D., Monge A., Wan B., Franzblau S., et al. Anti-Mycobacterium Tuberculosis Activity of Esters of Quinoxaline 1,4-Di-N-Oxide. Molecules. 2018;23:1453. doi: 10.3390/molecules23061453. PubMed DOI PMC

Adachi H., Tsujimoto M. Cloning and Expression of Dipeptidase from Acinetobacter Calcoaceticus Atcc 23055. J. Biochem. 1995;118:555–561. doi: 10.1093/oxfordjournals.jbchem.a124945. PubMed DOI

Reichau S., Blackmore N.J., Jiao W., Parker E.J. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium Tuberculosis Using -Amino Acids. PLOS ONE. 2016;11:e0152723. doi: 10.1371/journal.pone.0152723. PubMed DOI PMC

European Committee for Antimicrobial Susceptibility Testing (Eucast) of the European Society for Clinical Microbiology and Infectious Diseases (Escmid) Eucast Discussion Document E. Dis 5.1: Determination of Minimum Inhibitory Concentrations (Mics) of Antibacterial Agents by Broth Dilution. [(accessed on 11 December 2019)];Clin. Microbiol. Infec. 2003 9:1–7. Available online: http://www.eucast.org/documents/publications_in_journals/ PubMed

Eucast Definitive Document E.Def 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. [(accessed on 11 December 2019)];2017 Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/

Eucast Definitive Document E.Def 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. [(accessed on 11 December 2019)];2017 Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/

Bagla V.P., McGaw L.J., Elgorashi E.E., Eloff J.N. Antimicrobial Activity, Toxicity and Selectivity Index of Two Biflavonoids and a Flavone Isolated from Podocarpus Henkelii (Podocarpaceae) Leaves. BMC Complement. Altern. Med. 2014;14:383. doi: 10.1186/1472-6882-14-383. PubMed DOI PMC

Shih T.Y., Pai C.Y., Yang P., Chang W.L., Wang N.C., Hu O.Y. A Novel Mechanism Underlies the Hepatotoxicity of Pyrazinamide. Antimicrob. Agents Chemother. 2013;57:1685–1690. doi: 10.1128/AAC.01866-12. PubMed DOI PMC

Kočevar M., Polanc S., Verček B., Tišler M. Syntheses of Some N-(Pyrazinecarbonyl) Amino Acids and Peptides. Recl. Trav. Chim. Pays.-Bas. 1988;107:366–369. doi: 10.1002/recl.19881070503. DOI

Kakemi K., Arta T., Kitazawa S., Kiyotaki T. Studies on the Synthesis of Pyrazinoic Acid Derivatives. Ii. Derivatives of 3-Aminopyrazinoic Acid. Yakugaku Zasshi. 1961;81:1650–1653. doi: 10.1248/yakushi1947.81.11_1650. PubMed DOI

Naredla R.R., Dash B.P., Klumpp D.A. Preparation of Pyrazine Carboxamides: A Reaction Involving N-Heterocyclic Carbene (Nhc) Intermediates. Org. Lett. 2013;15:4806–4809. doi: 10.1021/ol402200x. PubMed DOI

Cynamon M.H., Speirs R.J., Welch J.T. In Vitro Antimycobacterial Activity of 5-Chloropyrazinamide. Antimicrob. Agents Chemother. 1998;42:462–463. PubMed PMC

Fieweger R.A., Wilburn K.M., VanderVen B.C. Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium Tuberculosis Complex. Microorganisms. 2019;7:177. doi: 10.3390/microorganisms7060177. PubMed DOI PMC

Agapova A., Serafini A., Petridis M., Hunt D.M., Garza-Garcia A., Sohaskey C.D., de Carvalho L.P.S. Flexible Nitrogen Utilisation by the Metabolic Generalist Pathogen Mycobacterium Tuberculosis. eLife. 2019;8 doi: 10.7554/eLife.41129. PubMed DOI PMC

Naffin-Olivos J.L., Daab A., White A., Goldfarb N.E., Milne A.C., Liu D., Baikovitz J., Dunn B.M., Rengarajan J., Petsko G.A., et al. Structure Determination of Mycobacterium Tuberculosis Serine Protease Hip1 (Rv2224c) Biochemistry. 2017;56:2304–2314. doi: 10.1021/acs.biochem.6b01066. PubMed DOI PMC

Akopian T., Kandror O., Tsu C., Lai J.H., Wu W., Liu Y., Zhao P., Park A., Wolf L., Dick L.R., et al. Cleavage Specificity of Mycobacterium Tuberculosis Clpp1p2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-Bacterial Activity. J. Biol. Chem. 2015;290:11008–11020. doi: 10.1074/jbc.M114.625640. PubMed DOI PMC

Soni D.K., Dubey S.K., Bhatnagar R. Atp-Binding Cassette (Abc) Import Systems of Mycobacterium Tuberculosis: Target for Drug and Vaccine Development. Emerg. Microbes Infect. 2020;9:207–220. doi: 10.1080/22221751.2020.1714488. PubMed DOI PMC

Dasgupta A., Sureka K., Mitra D., Saha B., Sanyal S., Das A.K., Chakrabarti P., Jackson M., Gicquel B., Kundu M., et al. An Oligopeptide Transporter of Mycobacterium Tuberculosis Regulates Cytokine Release and Apoptosis of Infected Macrophages. PLOS ONE. 2010;5:e12225. doi: 10.1371/journal.pone.0012225. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...