Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-05-00482
Ministry of Health of the Czech Republic
CZ.02.2.69/0.0/0.0/19_073/0016935
Grant Schemes at CU
PubMed
35631406
PubMed Central
PMC9143880
DOI
10.3390/ph15050580
PII: ph15050580
Knihovny.cz E-zdroje
- Klíčová slova
- aminooxazole, aminothiazole, antimycobacterial activity, docking, isostere, molecular docking, molecular dynamics, pyridine, water solubility,
- Publikační typ
- časopisecké články MeSH
Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k'w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial β-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.
Zobrazit více v PubMed
van Doorn H.R. Emerging infectious diseases. Med. Abingdon. 2014;42:60–63. doi: 10.1016/j.mpmed.2013.10.014. PubMed DOI PMC
World Health Organization . Global Tuberculosis Report 2021. World Health Organization; Geneva, Switzerland: 2021.
World Health Organization . Global Tuberculosis Report 2020. World Health Organization; Geneva, Switzerland: 2020.
Gygli S.M., Borrell S., Trauner A., Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41:354–373. doi: 10.1093/femsre/fux011. PubMed DOI
Tiberi S., du Plessis N., Walzl G., Vjecha M.J., Rao M., Ntoumi F., Mfinanga S., Kapata N., Mwaba P., McHugh T.D., et al. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis. 2018;18:e183–e198. doi: 10.1016/S1473-3099(18)30110-5. PubMed DOI
WHO publishes list of bacteria for which new antibiotics are urgently needed. [(accessed on 8 April 2022)]. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
Miller L.S. Clinical and Basic Immunodermatology. Springer International Publishing; Berlin, Germany: 2017. Bacterial Infections; pp. 265–288.
Azzali E., Girardini M., Annunziato G., Pavone M., Vacondio F., Mori G., Pasca M.R., Costantino G., Pieroni M. 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Med. Chem. Lett. 2020;11:1435–1441. doi: 10.1021/acsmedchemlett.0c00173. PubMed DOI PMC
Li J.R., Li D.D., Wang R.R., Sun J., Dong J.J., Du Q.R., Fang F., Zhang W.M., Zhu H.L. Design and synthesis of thiazole derivatives as potent FabH inhibitors with antibacterial activity. Eur. J. Med. Chem. 2014;75:438–447. doi: 10.1016/j.ejmech.2013.11.020. PubMed DOI
Lv P.C., Wang K.R., Yang Y., Mao W.J., Chen J., Xiong J., Zhu H.L. Design, synthesis and biological evaluation of novel thiazole derivatives as potent FabH inhibitors. Bioorg. Med. Chem. Lett. 2009;19:6750–6754. doi: 10.1016/j.bmcl.2009.09.111. PubMed DOI
Zitko J., Jand’ourek O., Paterova P., Navratilova L., Kunes J., Vinsova J., Dolezal M. Design, synthesis and antimycobacterial activity of hybrid molecules combining pyrazinamide with a 4-phenylthiazol-2-amine scaffold. Medchemcomm. 2018;9:685–696. doi: 10.1039/C8MD00056E. PubMed DOI PMC
Jaladanki C.K., Khatun S., Gohlke H., Bharatam P.V. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem. Res. Toxicol. 2021;34:1503–1517. doi: 10.1021/acs.chemrestox.0c00450. PubMed DOI
Smith G.F. Designing Drugs to Avoid Toxicity. In: Lawton G., Witty D.R., editors. Prog. Med. Chem. 2nd ed. Volume 50. Elsevier; Amsterdam, Netherlands: 2011. pp. 1–47. PubMed
Baell J.B., Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010;53:2719–2740. doi: 10.1021/jm901137j. PubMed DOI
Devine S.M., Mulcair M.D., Debono C.O., Leung E.W., Nissink J.W., Lim S.S., Chandrashekaran I.R., Vazirani M., Mohanty B., Simpson J.S., et al. Promiscuous 2-aminothiazoles (PrATs): A frequent hitting scaffold. J. Med. Chem. 2015;58:1205–1214. doi: 10.1021/jm501402x. PubMed DOI
Patani G.A., LaVoie E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev. 1996;96:3147–3176. doi: 10.1021/cr950066q. PubMed DOI
Ouyang L., Huang Y., Zhao Y., He G., Xie Y., Liu J., He J., Liu B., Wei Y. Preparation, antibacterial evaluation and preliminary structure-activity relationship (SAR) study of benzothiazol- and benzoxazol-2-amine derivatives. Bioorg. Med. Chem. Lett. 2012;22:3044–3049. doi: 10.1016/j.bmcl.2012.03.079. PubMed DOI
Sankar P.S., Babu K.N., Rekha T., Padmaja A., Padmavathi V. Molecular properties prediction, synthesis, and antimicrobial activity of bis(azolyl)sulfonamidoacetamides. Arch. Pharm. Weinh. 2021;354:e2000483. doi: 10.1002/ardp.202000483. PubMed DOI
Mochalkin I., Miller J.R., Narasimhan L., Thanabal V., Erdman P., Cox P.B., Prasad J.V., Lightle S., Huband M.D., Stover C.K. Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem. Biol. 2009;4:473–483. doi: 10.1021/cb9000102. PubMed DOI
Sriram D., Yogeeswari P., Thirumurugan R., Pavana R.K. Discovery of new antitubercular oxazolyl thiosemicarbazones. J. Med. Chem. 2006;49:3448–3450. doi: 10.1021/jm060339h. PubMed DOI
Meissner A., Boshoff H.I., Vasan M., Duckworth B.P., Barry C.E., 3rd, Aldrich C.C. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2013;21:6385–6397. doi: 10.1016/j.bmc.2013.08.048. PubMed DOI PMC
Nofiani R., Philmus B., Nindita Y., Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. Medchemcomm. 2019;10:1517–1530. doi: 10.1039/C9MD00162J. PubMed DOI PMC
Nawrot D., Suchankova E., Jandourek O., Konecna K., Barta P., Dolezal M., Zitko J. N-pyridinylbenzamides: An isosteric approach towards new antimycobacterial compounds. Chem. Biol. Drug Des. 2021;97:686–700. doi: 10.1111/cbdd.13804. PubMed DOI
Juhas M., Pallabothula V.S.K., Grabrijan K., Simovicova M., Jandourek O., Konecna K., Barta P., Paterova P., Gobec S., Sosic I., et al. Design, synthesis and biological evaluation of substituted 3-amino-N-(thiazol-2-yl)pyrazine-2-carboxamides as inhibitors of mycobacterial methionine aminopeptidase 1. Bioorg. Chem. 2022;118:105489. doi: 10.1016/j.bioorg.2021.105489. PubMed DOI
Abraham D.J., Myers M.R., Stewart K.D. Burger’s Medicinal Chemistry and Drug Discovery–Volume 2–Discovering Lead Molecules. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2021.
Montanari M.L.C., Montanari C.A., Piló-Veloso D., Cass Q.B. Estimation of the RP-HPLC Lipophilicity Parameters Log K’, and Log KW, A Comparison with the Hydrophobicity Index ϕ0. J. Liq. Chromatogr. Relat. Technol. 2006;20:1703–1715. doi: 10.1080/10826079708006327. DOI
Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Muegge I., Heald S.L., Brittelli D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001;44:1841–1846. doi: 10.1021/jm015507e. PubMed DOI
Daina A., Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016;11:1117–1121. doi: 10.1002/cmdc.201600182. PubMed DOI PMC
Ali J., Camilleri P., Brown M.B., Hutt A.J., Kirton S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012;52:420–428. doi: 10.1021/ci200387c. PubMed DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC
Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health. 2020;13:1255–1264. doi: 10.1016/j.jiph.2020.06.023. PubMed DOI
Gupta R.S., Lo B., Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018;9:67. doi: 10.3389/fmicb.2018.00067. PubMed DOI PMC
Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: Implications for drug discovery. BMC Genom. 2017;18:530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC
Chaturvedi V., Dwivedi N., Tripathi R.P., Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J. Gen. Appl. Microbiol. 2007;53:333–337. doi: 10.2323/jgam.53.333. PubMed DOI
Heinrichs M.T., May R.J., Heider F., Reimers T., SK B.S., Peloquin C.A., Derendorf H. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI
Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC
Ran K., Gao C., Deng H., Lei Q., You X., Wang N., Shi Y., Liu Z., Wei W., Peng C., et al. Identification of novel 2-aminothiazole conjugated nitrofuran as antitubercular and antibacterial agents. Bioorg. Med. Chem. Lett. 2016;26:3669–3674. doi: 10.1016/j.bmcl.2016.05.088. PubMed DOI
Zimichev A.V., Zemtsova M.N., Kashaev A.G., Klimochkin Y.N. Synthesis and Antituberculous Activity of Quinoline Isosteres of Isoniazid. Pharm. Chem. J. 2011;45:217–219. doi: 10.1007/s11094-011-0598-7. DOI
Subcommittee Of The Joint Tuberculosis Committee Of The British Thoracic Society Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax. 2000;55:210–218. doi: 10.1136/thorax.55.3.210. PubMed DOI PMC
Karakousis P.C., Moore R.D., Chaisson R.E. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect. Dis. 2004;4:557–565. doi: 10.1016/S1473-3099(04)01130-2. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:ix–xv. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Eucast Definitive Document E.Def 7.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. [(accessed on 8 April 2022)]. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/
Eucast Definitive Document E.Def 9.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. [(accessed on 8 April 2022)]. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/
Ottiger P., Pfaffen C., Leist R., Leutwyler S., Bachorz R.A., Klopper W. Strong N-H…pi hydrogen bonding in amide-benzene interactions. J. Phys. Chem B. 2009;113:2937–2943. doi: 10.1021/jp8110474. PubMed DOI
Liu K., Watanabe E., Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des. 2017;31:201–211. doi: 10.1007/s10822-016-0005-2. PubMed DOI
Ramappa V., Aithal G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013;3:37–49. doi: 10.1016/j.jceh.2012.12.001. PubMed DOI PMC
Luo Q.L., Li J.Y., Liu Z.Y., Chen L.L., Li J., Ye Q.Z., Nan F.J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 1: SAR studies on the determination of the key scaffold. Bioorg. Med. Chem. Lett. 2005;15:635–638. doi: 10.1016/j.bmcl.2004.11.034. PubMed DOI
Lee Y.S., Chuang S.H., Huang L.Y., Lai C.L., Lin Y.H., Yang J.Y., Liu C.W., Yang S.C., Lin H.S., Chang C.C., et al. Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: Optimization of in vitro potencies and pharmacokinetic properties. J. Med. Chem. 2014;57:4098–4110. doi: 10.1021/jm401990s. PubMed DOI
Zhang W.T., Ruan J.L., Wu P.F., Jiang F.C., Zhang L.N., Fang W., Chen X.L., Wang Y., Cao B.S., Chen G.Y., et al. Design, synthesis, and cytoprotective effect of 2-aminothiazole analogues as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. Chem. 2009;52:718–725. doi: 10.1021/jm800902t. PubMed DOI
Thatha S., Ummadi N., Venkatapuram P., Adivireddy P. Synthesis, Characterization, and Antioxidant Activity of a New Class of Amido linked Azolyl Thiophenes. J. Heterocycl. Chem. 2018;55:1410–1418. doi: 10.1002/jhet.3177. DOI
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Hunter J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Juhas M., Kucerova L., Horacek O., Jandourek O., Kubicek V., Konecna K., Kucera R., Barta P., Janousek J., Paterova P., et al. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules. 2020;25:1518. doi: 10.3390/molecules25071518. PubMed DOI PMC
Molecular Operating Environment (MOE) Chemical Computing Group ULC; Montreal, QC, Canada: 2019. 2020.0901.
Labute P. Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins. 2009;75:187–205. doi: 10.1002/prot.22234. PubMed DOI PMC
Michaud-Agrawal N., Denning E.J., Woolf T.B., Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC
Gowers R., Linke M., Barnoud J., Reddy T., Melo M., Seyler S., Domański J., Dotson D., Buchoux S., Kenney I., et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations; Proceedings of the 15th Python in Science Conference (SciPy); Austin, TX, USA. 11–17 July 2016.