Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole

. 2022 May 06 ; 15 (5) : . [epub] 20220506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631406

Grantová podpora
NU21-05-00482 Ministry of Health of the Czech Republic
CZ.02.2.69/0.0/0.0/19_073/0016935 Grant Schemes at CU

Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k'w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial β-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.

Erratum v

PubMed

Zobrazit více v PubMed

van Doorn H.R. Emerging infectious diseases. Med. Abingdon. 2014;42:60–63. doi: 10.1016/j.mpmed.2013.10.014. PubMed DOI PMC

World Health Organization . Global Tuberculosis Report 2021. World Health Organization; Geneva, Switzerland: 2021.

World Health Organization . Global Tuberculosis Report 2020. World Health Organization; Geneva, Switzerland: 2020.

Gygli S.M., Borrell S., Trauner A., Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiol Rev. 2017;41:354–373. doi: 10.1093/femsre/fux011. PubMed DOI

Tiberi S., du Plessis N., Walzl G., Vjecha M.J., Rao M., Ntoumi F., Mfinanga S., Kapata N., Mwaba P., McHugh T.D., et al. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis. 2018;18:e183–e198. doi: 10.1016/S1473-3099(18)30110-5. PubMed DOI

WHO publishes list of bacteria for which new antibiotics are urgently needed. [(accessed on 8 April 2022)]. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.

Miller L.S. Clinical and Basic Immunodermatology. Springer International Publishing; Berlin, Germany: 2017. Bacterial Infections; pp. 265–288.

Azzali E., Girardini M., Annunziato G., Pavone M., Vacondio F., Mori G., Pasca M.R., Costantino G., Pieroni M. 2-Aminooxazole as a Novel Privileged Scaffold in Antitubercular Medicinal Chemistry. ACS Med. Chem. Lett. 2020;11:1435–1441. doi: 10.1021/acsmedchemlett.0c00173. PubMed DOI PMC

Li J.R., Li D.D., Wang R.R., Sun J., Dong J.J., Du Q.R., Fang F., Zhang W.M., Zhu H.L. Design and synthesis of thiazole derivatives as potent FabH inhibitors with antibacterial activity. Eur. J. Med. Chem. 2014;75:438–447. doi: 10.1016/j.ejmech.2013.11.020. PubMed DOI

Lv P.C., Wang K.R., Yang Y., Mao W.J., Chen J., Xiong J., Zhu H.L. Design, synthesis and biological evaluation of novel thiazole derivatives as potent FabH inhibitors. Bioorg. Med. Chem. Lett. 2009;19:6750–6754. doi: 10.1016/j.bmcl.2009.09.111. PubMed DOI

Zitko J., Jand’ourek O., Paterova P., Navratilova L., Kunes J., Vinsova J., Dolezal M. Design, synthesis and antimycobacterial activity of hybrid molecules combining pyrazinamide with a 4-phenylthiazol-2-amine scaffold. Medchemcomm. 2018;9:685–696. doi: 10.1039/C8MD00056E. PubMed DOI PMC

Jaladanki C.K., Khatun S., Gohlke H., Bharatam P.V. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem. Res. Toxicol. 2021;34:1503–1517. doi: 10.1021/acs.chemrestox.0c00450. PubMed DOI

Smith G.F. Designing Drugs to Avoid Toxicity. In: Lawton G., Witty D.R., editors. Prog. Med. Chem. 2nd ed. Volume 50. Elsevier; Amsterdam, Netherlands: 2011. pp. 1–47. PubMed

Baell J.B., Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010;53:2719–2740. doi: 10.1021/jm901137j. PubMed DOI

Devine S.M., Mulcair M.D., Debono C.O., Leung E.W., Nissink J.W., Lim S.S., Chandrashekaran I.R., Vazirani M., Mohanty B., Simpson J.S., et al. Promiscuous 2-aminothiazoles (PrATs): A frequent hitting scaffold. J. Med. Chem. 2015;58:1205–1214. doi: 10.1021/jm501402x. PubMed DOI

Patani G.A., LaVoie E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev. 1996;96:3147–3176. doi: 10.1021/cr950066q. PubMed DOI

Ouyang L., Huang Y., Zhao Y., He G., Xie Y., Liu J., He J., Liu B., Wei Y. Preparation, antibacterial evaluation and preliminary structure-activity relationship (SAR) study of benzothiazol- and benzoxazol-2-amine derivatives. Bioorg. Med. Chem. Lett. 2012;22:3044–3049. doi: 10.1016/j.bmcl.2012.03.079. PubMed DOI

Sankar P.S., Babu K.N., Rekha T., Padmaja A., Padmavathi V. Molecular properties prediction, synthesis, and antimicrobial activity of bis(azolyl)sulfonamidoacetamides. Arch. Pharm. Weinh. 2021;354:e2000483. doi: 10.1002/ardp.202000483. PubMed DOI

Mochalkin I., Miller J.R., Narasimhan L., Thanabal V., Erdman P., Cox P.B., Prasad J.V., Lightle S., Huband M.D., Stover C.K. Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem. Biol. 2009;4:473–483. doi: 10.1021/cb9000102. PubMed DOI

Sriram D., Yogeeswari P., Thirumurugan R., Pavana R.K. Discovery of new antitubercular oxazolyl thiosemicarbazones. J. Med. Chem. 2006;49:3448–3450. doi: 10.1021/jm060339h. PubMed DOI

Meissner A., Boshoff H.I., Vasan M., Duckworth B.P., Barry C.E., 3rd, Aldrich C.C. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2013;21:6385–6397. doi: 10.1016/j.bmc.2013.08.048. PubMed DOI PMC

Nofiani R., Philmus B., Nindita Y., Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. Medchemcomm. 2019;10:1517–1530. doi: 10.1039/C9MD00162J. PubMed DOI PMC

Nawrot D., Suchankova E., Jandourek O., Konecna K., Barta P., Dolezal M., Zitko J. N-pyridinylbenzamides: An isosteric approach towards new antimycobacterial compounds. Chem. Biol. Drug Des. 2021;97:686–700. doi: 10.1111/cbdd.13804. PubMed DOI

Juhas M., Pallabothula V.S.K., Grabrijan K., Simovicova M., Jandourek O., Konecna K., Barta P., Paterova P., Gobec S., Sosic I., et al. Design, synthesis and biological evaluation of substituted 3-amino-N-(thiazol-2-yl)pyrazine-2-carboxamides as inhibitors of mycobacterial methionine aminopeptidase 1. Bioorg. Chem. 2022;118:105489. doi: 10.1016/j.bioorg.2021.105489. PubMed DOI

Abraham D.J., Myers M.R., Stewart K.D. Burger’s Medicinal Chemistry and Drug Discovery–Volume 2–Discovering Lead Molecules. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2021.

Montanari M.L.C., Montanari C.A., Piló-Veloso D., Cass Q.B. Estimation of the RP-HPLC Lipophilicity Parameters Log K’, and Log KW, A Comparison with the Hydrophobicity Index ϕ0. J. Liq. Chromatogr. Relat. Technol. 2006;20:1703–1715. doi: 10.1080/10826079708006327. DOI

Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Muegge I., Heald S.L., Brittelli D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001;44:1841–1846. doi: 10.1021/jm015507e. PubMed DOI

Daina A., Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016;11:1117–1121. doi: 10.1002/cmdc.201600182. PubMed DOI PMC

Ali J., Camilleri P., Brown M.B., Hutt A.J., Kirton S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012;52:420–428. doi: 10.1021/ci200387c. PubMed DOI

Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC

Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health. 2020;13:1255–1264. doi: 10.1016/j.jiph.2020.06.023. PubMed DOI

Gupta R.S., Lo B., Son J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018;9:67. doi: 10.3389/fmicb.2018.00067. PubMed DOI PMC

Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: Implications for drug discovery. BMC Genom. 2017;18:530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC

Chaturvedi V., Dwivedi N., Tripathi R.P., Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J. Gen. Appl. Microbiol. 2007;53:333–337. doi: 10.2323/jgam.53.333. PubMed DOI

Heinrichs M.T., May R.J., Heider F., Reimers T., SK B.S., Peloquin C.A., Derendorf H. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI

Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

Ran K., Gao C., Deng H., Lei Q., You X., Wang N., Shi Y., Liu Z., Wei W., Peng C., et al. Identification of novel 2-aminothiazole conjugated nitrofuran as antitubercular and antibacterial agents. Bioorg. Med. Chem. Lett. 2016;26:3669–3674. doi: 10.1016/j.bmcl.2016.05.088. PubMed DOI

Zimichev A.V., Zemtsova M.N., Kashaev A.G., Klimochkin Y.N. Synthesis and Antituberculous Activity of Quinoline Isosteres of Isoniazid. Pharm. Chem. J. 2011;45:217–219. doi: 10.1007/s11094-011-0598-7. DOI

Subcommittee Of The Joint Tuberculosis Committee Of The British Thoracic Society Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax. 2000;55:210–218. doi: 10.1136/thorax.55.3.210. PubMed DOI PMC

Karakousis P.C., Moore R.D., Chaisson R.E. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect. Dis. 2004;4:557–565. doi: 10.1016/S1473-3099(04)01130-2. PubMed DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:ix–xv. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI

Eucast Definitive Document E.Def 7.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. [(accessed on 8 April 2022)]. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/

Eucast Definitive Document E.Def 9.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. [(accessed on 8 April 2022)]. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/

Ottiger P., Pfaffen C., Leist R., Leutwyler S., Bachorz R.A., Klopper W. Strong N-H…pi hydrogen bonding in amide-benzene interactions. J. Phys. Chem B. 2009;113:2937–2943. doi: 10.1021/jp8110474. PubMed DOI

Liu K., Watanabe E., Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des. 2017;31:201–211. doi: 10.1007/s10822-016-0005-2. PubMed DOI

Ramappa V., Aithal G.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. J. Clin. Exp. Hepatol. 2013;3:37–49. doi: 10.1016/j.jceh.2012.12.001. PubMed DOI PMC

Luo Q.L., Li J.Y., Liu Z.Y., Chen L.L., Li J., Ye Q.Z., Nan F.J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 1: SAR studies on the determination of the key scaffold. Bioorg. Med. Chem. Lett. 2005;15:635–638. doi: 10.1016/j.bmcl.2004.11.034. PubMed DOI

Lee Y.S., Chuang S.H., Huang L.Y., Lai C.L., Lin Y.H., Yang J.Y., Liu C.W., Yang S.C., Lin H.S., Chang C.C., et al. Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: Optimization of in vitro potencies and pharmacokinetic properties. J. Med. Chem. 2014;57:4098–4110. doi: 10.1021/jm401990s. PubMed DOI

Zhang W.T., Ruan J.L., Wu P.F., Jiang F.C., Zhang L.N., Fang W., Chen X.L., Wang Y., Cao B.S., Chen G.Y., et al. Design, synthesis, and cytoprotective effect of 2-aminothiazole analogues as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. Chem. 2009;52:718–725. doi: 10.1021/jm800902t. PubMed DOI

Thatha S., Ummadi N., Venkatapuram P., Adivireddy P. Synthesis, Characterization, and Antioxidant Activity of a New Class of Amido linked Azolyl Thiophenes. J. Heterocycl. Chem. 2018;55:1410–1418. doi: 10.1002/jhet.3177. DOI

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Hunter J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Juhas M., Kucerova L., Horacek O., Jandourek O., Kubicek V., Konecna K., Kucera R., Barta P., Janousek J., Paterova P., et al. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules. 2020;25:1518. doi: 10.3390/molecules25071518. PubMed DOI PMC

Molecular Operating Environment (MOE) Chemical Computing Group ULC; Montreal, QC, Canada: 2019. 2020.0901.

Labute P. Protonate3D: Assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins. 2009;75:187–205. doi: 10.1002/prot.22234. PubMed DOI PMC

Michaud-Agrawal N., Denning E.J., Woolf T.B., Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC

Gowers R., Linke M., Barnoud J., Reddy T., Melo M., Seyler S., Domański J., Dotson D., Buchoux S., Kenney I., et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations; Proceedings of the 15th Python in Science Conference (SciPy); Austin, TX, USA. 11–17 July 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...