A new bactericidal chlorinated derivative containing 2-aminooxazole potentiates antibacterial action of colistin against multidrug-resistant acinetobacter baumannii
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
40971029
PubMed Central
PMC12449380
DOI
10.1007/s00430-025-00854-y
PII: 10.1007/s00430-025-00854-y
Knihovny.cz E-zdroje
- Klíčová slova
- Acinetobacter baumannii, 2-aminooxazole, Anti-biofilm activity, Antimicrobial resistance, Checkerboard synergy study,
- MeSH
- Acinetobacter baumannii * účinky léků fyziologie MeSH
- antibakteriální látky * farmakologie MeSH
- biofilmy účinky léků MeSH
- buněčné linie MeSH
- infekce bakteriemi rodu Acinetobacter farmakoterapie mikrobiologie MeSH
- kolistin * farmakologie MeSH
- larva účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- můry MeSH
- oxazoly * farmakologie chemie MeSH
- synergismus léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- kolistin * MeSH
- oxazoly * MeSH
This comprehensive study provides insight into the antibacterial action of a recently published 2-chloro-N-(oxazol-2-yl)isonicotinamide (AB15), intending to assess its potential as a candidate adjuvant molecule to support existing antibacterial drugs. Within the determination of the antibacterial effect, a promising activity against a member of the ESKAPE group with reduced treatment options, biofilm producer, Acinetobacter baumannii, was recognized (MIC of AB15 ranged from 15.63 to 62.5 µM). In addition, AB15 exhibited bactericidal activity and non/low-toxicity in vitro (IC50 > 1000 µM using HK-2 cells) and in vivo (LD50 > 500 mg/kg of body weight of the Galleria mellonella larvae, for both intra-hemocoel and per oral administration routes). Checkerboard assay revealed additive and synergistic interactions of AB15 and last-resort antibiotic drug, colistin (CST). Moreover, attention was also given to a frequently overlooked antibiofilm activity - the ability to suppress bacterial dissemination from microbial biofilms, and parameter MBDC (minimum biofilm dissemination concentration) was introduced. The study of the antibiofilm activity of AB15 and CST, both acting individually, or in AB15 + CST combination, revealed that AB15 has significant potential to suppress bacterial dissemination from biofilm formed by a clinical isolate Acinetobacter baumannii and that it contributes to this effect when combined with CST. Finally, AB15 + CST combination demonstrated significantly greater biocompatibility towards human erythrocytes than CST acting individually at an equivalent antibiofilm-effective concentration. The role of AB15 as a promising adjuvant molecule to CST is also supported by its distinct mechanism of action, which reduces the risk of antimicrobial resistance emergence. To conclude, AB15 exhibits several essential attributes that support its designation as a promising antibiotic adjuvant.
Zobrazit více v PubMed
WHO. Antimicrobial Resistance (2023) The World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
CDC (2018) Antibiotic resistance: a global threat: centers for disease control and prevention. Available from: https://www.cdc.gov/drugresistance/solutions-initiative/stories/ar-global-threat.html
Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241. 10.1177/2042098614554919 PubMed PMC
Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, Gikas A, Palos C, Lopez-Casasnovas G (2020) Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: systematic review and meta-analysis. PLoS ONE 15(1):e0227139. 10.1371/journal.pone.0227139 PubMed PMC
Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ (2016) Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387(10014):176–187. 10.1016/S0140-6736(15)00473-0 PubMed
WHO (2017) Who publishes list of bacteria for which new antibiotics are urgently needed: The World Health Organization. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
WHO (2024) WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance: The World Health Organization. Available from: https://www.who.int/publications/i/item/9789240093461
WHO (2025) Global research agenda for antimicrobial resistance in human health: the World Health Organization. Available from: https://www.who.int/publications/i/item/9789240102309
Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4(3):482–501. 10.3934/microbiol.2018.3.482 PubMed PMC
McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P (2014) Biofilms in periprosthetic orthopedic infections. Future Microbiol 9(8):987–1007. 10.2217/fmb.14.64 PubMed PMC
De Souza PR, De Andrade D, Cabral DB, Watanabe E (2014) Endotracheal tube biofilm and ventilator-associated pneumonia with mechanical ventilation. Microsc Res Tech 77(4):305–312. 10.1002/jemt.22344 PubMed
Gominet M, Compain F, Beloin C, Lebeaux D (2017) Central venous catheters and biofilms: where do we stand in 2017? APMIS 125(4):365–375. 10.1111/apm.12665 PubMed
Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53–62. 10.2174/1874285801711010053 PubMed PMC
de Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 10.1128/CMR.00181-19 PubMed PMC
Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067. 10.1155/2016/2475067 PubMed PMC
Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:76. 10.1186/s13756-019-0533-3 PubMed PMC
Di Domenico EG, Farulla I, Prignano G, Gallo MT, Vespaziani M, Cavallo I, Sperduti I, Pontone M, Bordignon V, Cilli L, De Santis A, Di Salvo F, Pimpinelli F, Lesnoni La Parola I, Toma L, Ensoli F (2017) Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int J Mol Sci 18(5):1. 10.3390/ijms18051077 PubMed PMC
Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in PubMed PMC
Li Y, Xiao P, Wang Y, Hao Y (2020) Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega 5(36):22684–22690. 10.1021/acsomega.0c02294 PubMed PMC
Amato SM, Fazen CH, Henry TC, Mok WW, Orman MA, Sandvik EL, Volzing KG, Brynildsen MP (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70. 10.3389/fmicb.2014.00070 PubMed PMC
Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70(2):267–274. 10.1007/s10541-005-0111-6 PubMed
Vazquez-Lopez R, Solano-Galvez SG, Juarez Vignon-Whaley JJ, Abello Vaamonde JA, Padro Alonzo LA, Rivera Resendiz A, Muleiro Alvarez M, Vega Lopez EN, Franyuti-Kelly G, Alvarez-Hernandez DA, Moncaleano Guzman V, Juarez Banuelos JE, Marcos Felix J, Gonzalez Barrios JA, Barrientos Fortes T (2020) PubMed PMC
Chen L, Yu K, Chen L, Zheng X, Huang N, Lin Y, Jia H, Liao W, Cao J, Zhou T (2021) Synergistic activity and biofilm formation effect of colistin combined with PFK-158 against Colistin-resistant gram-negative bacteria. Infect Drug Resist 14:2143–2154. 10.2147/IDR.S309912 PubMed PMC
Nishimura B, Escalante J, Tuttobene MR, Subils T, Mezcord V, Pimentel C, Georgeos N, Pasteran F, Rodriguez C, Sieira R, Actis LA, Tolmasky ME, Bonomo RA, Ramirez MS (2022) PubMed PMC
Annunziato G (2019) Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: a review. Int J Mol Sci. 10.3390/ijms20235844 PubMed PMC
Juhas M, Bachtikova A, Nawrot DE, Hatokova P, Pallabothula VSK, Diepoltova A, Jandourek O, Barta P, Konecna K, Paterova P, Sestak V, Zitko J (2022) Improving antimicrobial activity and physico-chemical properties by isosteric replacement of 2-aminothiazole with 2-aminooxazole. Pharmaceuticals (Basel). 10.3390/ph15050580 PubMed PMC
Matuschek E, Brown DF, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20(4):O255–O266. 10.1111/1469-0691.12373 PubMed
Hasselmann C, Microbiology ESC (2003) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infec. 10.1046/j.1469-0691.2003.00790.x
Nowakowska J, Griesser HJ, Textor M, Landmann R, Khanna N (2013) Antimicrobial properties of 8-hydroxyserrulat-14-en-19-oic acid for treatment of implant-associated infections. Antimicrob Agents Chemother 57(1):333–342. 10.1128/AAC.01735-12 PubMed PMC
Haydak MH (1936) Value of foods other than pollen in nutrition of the honeybee. J Econ Entomol 29(5):870–877. 10.1093/jee/29.5.870
Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, Pletz MW (2019) MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology. Biol Proced Online 21:18. 10.1186/s12575-019-0106-0 PubMed PMC
Barraud N, Kjelleberg S, Rice SA (2015) Dispersal from microbial biofilms. Microbiol Spectr. 10.1128/microbiolspec.MB-0015-2014 PubMed
Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmolle M, Stewart PS, Bjarnsholt T (2022) The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20(10):608–620. 10.1038/s41579-022-00767-0 PubMed PMC
Saebo IP, Bjoras M, Franzyk H, Helgesen E, Booth JA (2023) Optimization of the hemolysis assay for the assessment of cytotoxicity. Int J Mol Sci. 10.3390/ijms24032914 PubMed PMC
Boehm D, Bell A (2014) Simply red: a novel spectrophotometric erythroid proliferation assay as a tool for erythropoiesis and erythrotoxicity studies. Biotechnol Rep (Amst) 4:34–41. 10.1016/j.btre.2014.07.005 PubMed PMC
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717 PubMed PMC
Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117–1121. 10.1002/cmdc.201600182 PubMed PMC
O’Shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51(10):2871–2878. 10.1021/jm700967e PubMed
Wishart DS, Tian S, Allen D, Oler E, Peters H, Lui VW, Gautam V, Djoumbou-Feunang Y, Greiner R, Metz TO (2022) BioTransformer 3.0-a web server for accurately predicting metabolic transformation products. Nucl Acids Res 50(W1):W115–W123. 10.1093/nar/gkac313 PubMed PMC
Hu W, Lv F, Tang Y, Chen C, Wei J, Dong S, Quian Y (2017) Spiro three-membered ring, spiro five-membered ring peptide deformylase inhibitor and use thereof in antibacteria and anti-tumor. CN 107362162
Yamaguchi T, Itoh, K., Hirano, T., Shimabara, R., Kawakubo, Y., Sato, M., Yamashita, J., Yazaki, A., Ueshima, T (2018) Preparation of pyridone-carboxylic acid derivatives as antitumor agents WO2018174266
Deangelis AJ, Feng Z (2022) Preparation of bicyclic amides for controlling invertebrate pests 2:WO2022192224
Bleicher K, Mutel V, Vieira E, Wichmann J, Woltering TJ (2000) Preparation of carbamic acid derivatives and evaluation of their use as metabotropic glutamate receptor ligands. WO2000063166
Kim BJ, Kim J, Kim YK, Choi SY, Choo HYP (2010) Synthesis of benzoxazole amides as novel antifungal agents against malassezia furfur. B Korean Chem Soc 31(5):1270–1274. 10.5012/bkcs.2010.31.5.1270
Li D, Liu C, Jiang X, Lin Y, Zhang J, Li Y, You X, Jiang W, Chen M, Xu Y, Si S (2021) Design, synthesis, and evaluation of substituted 2-acylamide-1,3-benzo[d]zole analogues as agents against MDR- and XDR-MTB. Eur J Med Chem 209:112898. 10.1016/j.ejmech.2020.112898 PubMed
Hemdan MM (2010) Synthesis and antimicrobial activities of some heterocyclic systems from 2-furoyl isothiocyanate. Phosphorus Sulfur 185(3):620–627. 10.1080/10426500902893209
Yamamori TN, Ishizuka K, Sakai NK (2001) InventorAmides as apolipoprotein A-I expression stimulators
Trush MM, Kovalishyn V, Hodyna D, Golovchenko OV, Chumachenko S, Tetko IV, Brovarets VS, Metelytsia L (2020) In silico and in vitro studies of a number PILs as new antibacterials against MDR clinical isolate PubMed
Haroun M, Tratrat C, Petrou A, Geronikaki A, Ivanov M, Ciric A, Sokovic M (2021) 2-aryl-3-(6-trifluoromethoxy)benzo[d]thiazole-based thiazolidinone hybrids as potential anti-infective agents: synthesis, biological evaluation and molecular docking studies. Bioorg Med Chem Lett 32:127718. 10.1016/j.bmcl.2020.127718 PubMed
Azzali E, Girardini M, Annunziato G, Pavone M, Vacondio F, Mori G, Pasca MR, Costantino G, Pieroni M (2020) 2-aminooxazole as a novel privileged scaffold in antitubercular medicinal chemistry. ACS Med Chem Lett 11(7):1435–1441. 10.1021/acsmedchemlett.0c00173 PubMed PMC
Junqueira JC (2012) PubMed PMC
Borman AM (2018) Of mice and men and larvae: PubMed PMC
Ignasiak K, Maxwell A (2017) PubMed PMC
Uzairue LI, Rabaan AA, Adewumi FA, Okolie OJ, Folorunso JB, Bakhrebah MA, Garout M, Alfouzan WA, Halwani MA, Alamri AA, Halawani SA, Alshahrani FS, Hasan A, Mutair AA, Alhumaid S, Etafo J, Utip I, Odoh IM, Uwaezuoke NS (2022) Global prevalence of colistin resistance in PubMed PMC
Narimisa N, Goodarzi F, Bavari S (2022) Prevalence of colistin resistance of PubMed PMC
Liu X, Wu Y, Zhu Y, Jia P, Li X, Jia X, Yu W, Cui Y, Yang R, Xia W, Xu Y, Yang Q (2022) Emergence of colistin-resistant hypervirulent PubMed PMC
Brennan-Krohn T, Pironti A, Kirby JE (2018) Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 10.1128/AAC.00873-18 PubMed PMC
Almutairi MM (2022) Synergistic activities of colistin combined with other antimicrobial agents against colistin-resistant PubMed PMC
Khalil MAF, Moawad SS, Hefzy EM (2019) In vivo activity of co-trimoxazole combined with colistin against PubMed
Huang C, Chen I, Tang T (2022) Colistin monotherapy versus colistin plus meropenem combination therapy for the treatment of multidrug-resistant PubMed PMC
Durante-Mangoni E, Signoriello G, Andini R, Mattei A, De Cristoforo M, Murino P, Bassetti M, Malacarne P, Petrosillo N, Galdieri N, Mocavero P, Corcione A, Viscoli C, Zarrilli R, Gallo C, Utili R (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant PubMed
Pogue JM, Kaye KS (2013) Is there really no benefit to combination therapy with colistin? Expert Rev Anti-Infect Ther 11(9):881–884. 10.1586/14787210.2013.827881 PubMed
Nigam A, Kumari A, Jain R, Batra S (2015) Colistin neurotoxicity: revisited. BMJ Case Rep. 10.1136/bcr-2015-210787 PubMed PMC
Ordooei Javan A, Shokouhi S, Sahraei Z (2015) A review on colistin nephrotoxicity. Eur J Clin Pharmacol 71(7):801–810. 10.1007/s00228-015-1865-4 PubMed
Manchanda V, Sanchaita S, Singh N (2010) Multidrug resistant acinetobacter. J Glob Infect Dis 2(3):291–304. 10.4103/0974-777X.68538 PubMed PMC
Gedefie A, Demsis W, Ashagrie M, Kassa Y, Tesfaye M, Tilahun M, Bisetegn H, Sahle Z (2021) Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect Drug Resist 14:3711–3719. 10.2147/IDR.S332051 PubMed PMC
Eze EC, Chenia HY, El Zowalaty ME (2018) Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 11:2277–2299. 10.2147/IDR.S169894 PubMed PMC
Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8):891–899. 10.1111/j.1600-0463.2007.apm_630.x PubMed
Pettit RK, Weber CA, Pettit GR (2009) Application of a high throughput alamar blue biofilm susceptibility assay to PubMed PMC
Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML (2005) Microplate alamar blue assay for PubMed PMC
Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78. 10.1016/j.mib.2016.01.004 PubMed PMC
El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB (2020) Colistin and its role in the era of antibiotic resistance: an extended review (2000-2019). Emerg Microbes Infect 9(1):868–885. 10.1080/22221751.2020.1754133 PubMed PMC
Westenfelder C, Gooch A (2022) Heme protein-induced acute kidney injury is caused by disruption of mitochondrial homeostasis in proximal tubular cells. Kidney360 3(12):2140–2142. 10.34067/KID.0006372022 PubMed PMC