Independent reaction times method in Geant4-DNA: Implementation and performance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 CA187003
NCI NIH HHS - United States
NIH R01 CA187003
UCSF Medical School Bridge
PubMed
32970844
PubMed Central
PMC7891885
DOI
10.1002/mp.14490
Knihovny.cz E-zdroje
- Klíčová slova
- Geant4-DNA, LET, Monte Carlo, independent reaction times, radiolysis, track-structure,
- MeSH
- chemické modely * MeSH
- DNA MeSH
- lineární přenos energie * MeSH
- metoda Monte Carlo MeSH
- počítačová simulace MeSH
- reakční čas MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- voda MeSH
PURPOSE: The simulation of individual particle tracks and the chemical stage following water radiolysis in biological tissue is an effective means of improving our knowledge of the physico-chemical contribution to the biological effect of ionizing radiation. However, the step-by-step simulation of the reaction kinetics of radiolytic species is the most time-consuming task in Monte Carlo track-structure simulations, with long simulation times that are an impediment to research. In this work, we present the implementation of the independent reaction times (IRT) method in Geant4-DNA Monte Carlo toolkit to improve the computational efficiency of calculating G-values, defined as the number of chemical species created or lost per 100 eV of deposited energy. METHODS: The computational efficiency of IRT, as implemented, is compared to that from available Geant4-DNA step-by-step simulations for electrons, protons and alpha particles covering a wide range of linear energy transfer (LET). The accuracy of both methods is verified using published measured data from fast electron irradiations for • OH and e aq - for time-dependent G-values. For IRT, simulations in the presence of scavengers irradiated by cobalt-60 γ-ray and 2 MeV protons are compared with measured data for different scavenging capacities. In addition, a qualitative assessment comparing measured LET-dependent G-values with Geant4-DNA calculations in pure liquid water is presented. RESULTS: The IRT improved the computational efficiency by three orders of magnitude relative to the step-by-step method while differences in G-values by 3.9% at 1 μs were found. At 7 ps, • OH and e aq - yields calculated with IRT differed from recent published measured data by 5% ± 4% and 2% ± 4%, respectively. At 1 μs, differences were 9% ± 5% and 6% ± 7% for • OH and e aq - , respectively. Uncertainties are one standard deviation. Finally, G-values at different scavenging capacities and LET-dependent G-values reproduced the behavior of measurements for all radiation qualities. CONCLUSION: The comprehensive validation of the Geant4-DNA capabilities to accurately simulate the chemistry following water radiolysis is an ongoing work. The implementation presented in this work is a necessary step to facilitate performing such a task.
Department of Radiation Convergence Engineering Yonsei University Wonju 26493 Korea
Department of Radiation Dosimetry Nuclear Physics Institute of the CAS Prague Czech Republic
Department of Radiation Oncology University of California San Francisco San Francisco CA 94115 USA
Institut de Radioprotection et de Sûreté Nucléaire IRSN BP17 Fontenay aux Roses 92262 France
KEK 1 1 Oho Tsukuba Ibaraki 305 0801 Japan
Radiation Laboratory University of Notre Dame Notre Dame IN 46556 USA
Zobrazit více v PubMed
Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. Radiation track, DNA damage and response—a review. Reports Prog Phys. 2016;79(11):116601. doi:10.1088/0034-4885/79/11/116601 PubMed DOI
Dingfelder M, Hantke D, Inokuti M, Paretzke HG. Electron inelastic-scattering cross sections in liquid water. Radiat Phys Chem. 1999;53(1):1–18. doi:10.1016/S0969-806X(97)00317-4 DOI
Plante I, Devroye L. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations. Radiat Phys Chem. 2017;139(September 2016):157–172. doi:10.1016/j.radphyschem.2017.03.021 DOI
Boscolo D, Krämer M, Durante M, Fuss MC, Scifoni E. TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets. Chem Phys Lett. 2018;698:11–18. doi:10.1016/j.cplett.2018.02.051 DOI
Frongillo Y, Goulet T, Fraser M-J, Cobut V, Patau JP, Jay-Gerin J-P. Monte Carlo Simulation of Fast Electron And Proton Tracks In Liquid Water - II. Nonhomogeneous Chemistry. Radiat Phys Chem. 1998;51(3):245–254. doi:10.1016/S0969-806X(97)00097-2 DOI
Incerti S, Baldacchino G, Bernal M, et al. THE Geant4-DNA project. Int J Model Simulation, Sci Comput. 2010;1(2):157–178. doi:10.1142/S1793962310000122 DOI
Incerti S, Ivanchenko A, Karamitros M, et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys. 2010;37(9):4692–4708. doi:10.1118/1.3476457 PubMed DOI
Bernal MA, Bordage MC, Brown JMC, et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med. 2015;31(8):861–874. doi:10.1016/j.ejmp.2015.10.087 PubMed DOI
Incerti S, Kyriakou I, Bernal MA, et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med Phys. 2018;45(8):e722–e739. doi:10.1002/mp.13048 PubMed DOI
Friedland W, Schmitt E, Kundrát P, et al. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci Rep. 2017;7(March):45161. doi:10.1038/srep45161 PubMed DOI PMC
Lampe N, Karamitros M, Breton V, et al. Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell. Phys Medica. 2018;48(June 2017):146–155. doi:10.1016/j.ejmp.2017.12.008 PubMed DOI
Sakata D, Lampe N, Karamitros M, et al. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. Phys Medica. 2019;62(January):152–157. doi:10.1016/j.ejmp.2019.04.010 PubMed DOI
Meylan S, Incerti S, Karamitros M, et al. Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA. Sci Rep. 2017;7(1):1–15. doi:10.1038/s41598-017-11851-4 PubMed DOI PMC
Tang N, Bueno M, Meylan S, et al. Influence of chromatin compaction on simulated early radiation-induced DNA damage using Geant4-DNA. Med Phys. 2019;46(3):1501–1511. doi:10.1002/mp.13405 PubMed DOI
Agostinelli S, Allison J, Amako K, et al. GEANT4 - A simulation toolkit. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2003;506(3):250–303. doi:10.1016/S0168-9002(03)01368-8 DOI
Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–278. doi:10.1109/TNS.2006.869826 DOI
Allison J, Amako K, Apostolakis J, et al. Recent developments in GEANT4. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2016;835:186–225. doi:10.1016/j.nima.2016.06.125 DOI
Karamitros M, Mantero A, Incerti S, et al. Modeling Radiation Chemistry in the Geant4 Toolkit. Prog Nucl Sci Technol. 2011;2:503–508. http://www.aesj.or.jp/publication/pnst002/data/503-508.pdf.
Karamitros M, Luan S, Bernal MA, et al. Diffusion-controlled reactions modeling in Geant4-DNA. J Comput Phys. 2014;274:841–882. doi:10.1016/j.jcp.2014.06.011 DOI
Shin W-G, Ramos-Mendez J, Faddegon B, et al. Evaluation of the influence of physical and chemical parameters on water radiolysis simulations under MeV electron irradiation using Geant4-DNA. J Appl Phys. 2019;126(11):114301. doi:10.1063/1.5107511 DOI
Schuemann J, McNamara AL, Ramos-Méndez J, et al. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiat Res. 2018;191(2):125. doi:10.1667/RR15226.1 PubMed DOI PMC
Ramos-Méndez J, Burigo LN, Schulte R, Chuang C, Faddegon B. Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy. Phys Med Biol. 2018;63(23):235015. doi:10.1088/1361-6560/aaeeee PubMed DOI PMC
Ivanchenko V, Apostolakis J, Bagulya a., et al. Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces. 3th Monte Carlo Conf MC 2010. 2011;2:898–903. http://hal.in2p3.fr/in2p3-00658779.
Clifford P, Green NJB, Oldfield MJ, Pilling MJ, Pimblott SM. Stochastic Models of Multi-species Kinetics in Radiation-induced Spurs. J Chem Soc, Faraday Trans 1. 1986;82:2673–2689. doi:10.1039/F19868202673 DOI
Green NJB, Pilling MJ, Clifford P. Stochastic Modeling of Fast Kinetics in a Radiation Track. Society. 1990;94(1):251–258. doi:10.1021/j100364a041 DOI
Pimblott SM, Pilling MJ, Green NJB. Stochastic models of spur kinetics in water. Int J Radiat Appl Instrumentation Part. 1991;37(3):377–388. doi:10.1016/1359-0197(91)90006-N DOI
Tomita H, Kai M, Kusama T, Ito A. Monte Carlo simulation of physicochemical processes of liquid water radiolysis. Radiat Environ Biophys. 1997;36(2):105–116. doi:10.1007/s004110050061 PubMed DOI
Gervais B, Beuve M, Olivera GH, Galassi ME. Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat Phys Chem. 2006;75(4):493–513. doi:10.1016/j.radphyschem.2005.09.015 DOI
Tomita H, Kai M, Kusama T, Ito A. Monte Carlo simulation of DNA strand-break induction in supercoiled plasmid pBR322 DNA from indirect effects. Radiat Environ Biophys. 1998;36(4):235–241. doi:10.1007/s004110050077 PubMed DOI
Karamitros M, Brown J, Lampe N, et al. Implementing the Independent Reaction Time method in Geant4 for radiation chemistry simulations. 2020.
Sanguanmith S, Meesungnoen J, Muroya Y, Lin M, Katsumura Y, Jay-Gerin JP. On the spur lifetime and its temperature dependence in the low linear energy transfer radiolysis of water. Phys Chem Chem Phys. 2012;14(48):16731–16736. doi:10.1039/c2cp42826a PubMed DOI
Sano H, Tachiya M. Partially diffusion-controlled recombination. J Chem Phys. 1979;71(3):1276–1282. doi:10.1063/1.438427 DOI
Tachiya M Theory of diffusion-controlled reactions: Formulation of the bulk reaction rate in terms of the pair probability. Radiat Phys Chem. 1983;21(1–2):167–175. doi:10.1016/0146-5724(83)90143-7 DOI
Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2003;506(3):250–303. doi:10.1016/S0168-9002(03)01368-8 DOI
Goulet T, Jay-Gerin JP. On the reactions of hydrated electrons with OH. and H 3O+. Analysis of photoionization experiments. J Chem Phys. 1992;96(7):5076–5087. doi:10.1063/1.462751 DOI
Lazarakis P, Incerti S, Ivanchenko V, et al. Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4. Biomed Phys Eng Express. 2018;4(2):024001. doi:10.1088/2057-1976/aaa6aa DOI
Emfietzoglou D Inelastic cross-sections for electron transport in liquid water: A comparison of dielectric models. Radiat Phys Chem. 2003;66(6):373–385. doi:10.1016/S0969-806X(02)00504-2 DOI
Rudd ME, Kim Y-K, Märk T, Schou J, Stolterfoht N, Toburen LH. ICRU Report 55. J Int Comm Radiat Units Meas. 1996;os28(2):NP–NP. doi:10.1093/jicru/os28.2.Report55 DOI
Shin WG, Bordage MC, Emfietzoglou D, et al. Development of a new Geant4-DNA electron elastic scattering model for liquid-phase water using the ELSEPA code. J Appl Phys. 2018;124(22). doi:10.1063/1.5047751 DOI
Bote D, Salvat F, Jablonski A, Powell CJ. The effect of inelastic absorption on the elastic scattering of electrons and positrons in amorphous solids. J Electron Spectros Relat Phenomena. 2009;175(1–3):41–54. doi:10.1016/j.elspec.2009.07.003 DOI
Michaud M, Wen A, Sanche L. Cross Sections for Low-Energy (1–100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice. Radiat Res. 2003;159(1):3–22. doi:10.1667/0033-7587(2003)159[0003:csflee]2.0.co;2 PubMed DOI
Meesungnoen J, Jay-Gerin J-P, Filali-Mouhim A, Mankhetkorn S. Low-Energy Electron Penetration Range in Liquid Water. Radiat Res. 2002;158(5):657–660. doi:10.1667/0033-7587(2002)158[0657:leepri]2.0.co;2 PubMed DOI
Peukert D, Incerti S, Kempson I, et al. Validation and investigation of reactive species yields of Geant4-DNA chemistry models. Med Phys. 2019;46(2):983–998. doi:10.1002/mp.13332 PubMed DOI
Kreipl MS, Friedland W, Paretzke HG. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation. Radiat Environ Biophys. 2009;48(1):11–20. doi:10.1007/s00411-008-0194-8 PubMed DOI
Ramos-Méndez J, Perl J, Schuemann J, McNamara A, Paganetti H, Faddegon B. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio. Phys Med Biol. 2018;63(10):105014. doi:10.1088/1361-6560/aac04c PubMed DOI PMC
Uehara S, Nikjoo H. Monte Carlo simulation of water radiolysis for low-energy charged particles. J Radiat Res. 2006;47(1):69–81. doi:10.1269/jrr.47.69 PubMed DOI
Pimblott SM, LaVerne JA. Stochastic Simulation of the Electron Radiolysis of Water and Aqueous Solutions. J Phys Chem A. 1997;101(33):5828–5838. doi:10.1021/jp970637d DOI
Bartels DM, Cook AR, Mudaliar M, Jonah CD. Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy. J Phys Chem A. 2000;104(8):1686–1691. doi:10.1021/jp992723e DOI
Muroya Y, Lin M, Wu G, et al. A re-evaluation of the initial yield of the hydrated electron in the picosecond time range. Radiat Phys Chem. 2005;72(2–3):169–172. doi:10.1016/j.radphyschem.2004.09.011 DOI
El Omar AK, Schmidhammer U, Jeunesse P, et al. Time-dependent radiolytic yield of OH• radical studied by picosecond pulse radiolysis. J Phys Chem A. 2011;115(44):12212–12216. doi:10.1021/jp208075v PubMed DOI
Wang F, Schmidhammer U, Larbre JP, Zong Z, Marignier JL, Mostafavi M. Time-dependent yield of the hydrated electron and the hydroxyl radical in D2O: A picosecond pulse radiolysis study. Phys Chem Chem Phys. 2018;20(23):15671–15679. doi:10.1039/c8cp02276c PubMed DOI
Laverne JA. OH Radicals and Oxidizing Products in the Gamma Radiolysis of Water. Source Radiat Res Radiat Res Gamma Radiolysis Water Radiat Res. 2000;(153):53–196. http://www.jstor.org/stable/3580071 Accessed February 15, 2017. PubMed
Yoshida H, Bolch WE, Jacobson KB, Turner JE. Measurement of free ammonia produced by X irradiation of glycylglycine in aqueous solution. Radiat Res. 1990;121(3):257–261. doi:10.2307/3577774 PubMed DOI
LaVerne JA, Štefanić I, Pimblott SM. Hydrated Electron Yields in the Heavy Ion Radiolysis of Water. J Phys Chem A. 2005;109(42):9393–9401. doi:10.1021/jp0530303 PubMed DOI
Al-Samra EH, Green NJB. On the approximation of independent pairs in diffusion kinetics: Correlation of distances in a three-body system. Phys Chem Chem Phys. 2018;20(4):2872–2879. doi:10.1039/c7cp06929d PubMed DOI
Pimblott SM, Green NJB. Stochastic modeling of partially diffusion-controlled reactions in spur kinetics. J Phys Chem. 1992;96(23):9338–9348. doi:10.1021/j100202a052 DOI
Meesungnoen J, Jay-Gerin J-P. Effect of multiple ionization on the yield of H2O2 produced in the radiolysis of aqueous 0.4 M H2SO4 solutions by high-LET 12C6+ and 20Ne9+ ions. Radiat Res. 2005;164(5):688–694. doi:10.1667/RR3459.1 PubMed DOI
Karamitros M Extension de l’outil Monte Carlo généraliste Geant4 pour la simulation de la radiolyse de l’eau dans le cadre du projet Geant4-DNA. 2013. https://www.dropbox.com/s/r4grkm83uprchcd/These_MKaramitros.pdf%5Cnpapers3://publication/uuid/6BC42EC2-1ECD-47CB-84EC-DECE3E1B2CD3.
Burns WG. Effect of Radiation Type in Water Radiolysis. J Chem SOC Faraday Trans I. 1981;77:2803–2813.
Appleby A, Schwarz HA. Radical and molecular yields in water irradiated by .gamma.-rays and heavy ions. J Phys Chem. 1969;73(6):1937–1941. doi:10.1021/j100726a048 DOI
Anderson AR, Hart EJ. Molecular Product and Free Radical Yields in the Decomposition of Water by Protons, Deuterons, and Helium Ions. Radiat Res. 1961;14(6):689–704. doi:10.2307/3571010 PubMed DOI
Sauer MC, Schmidt KH, Hart EJ, Naleway CA, Jonah CD. LET dependence of transient yields in the pulse radiolysis of aqueous systems with deuterons and alpha particles. Radiat Res. 1977;70(1):91–106. doi:10.2307/3574734 PubMed DOI
Elliot A et al. Temperature Dependence of g Values for H2O and D2O irradiated with Low Linear Energy Transfer Radiation. J Chem Soc Faraday Trans. 1993;89(8):1193–1197. doi:10.1039/FT9938901193 DOI
Pastina B, LaVerne JA. Hydrogen Peroxide Production in the Radiolysis of Water with Heavy Ions. J Phys Chem A. 1999;103(11):1592–1597. doi:10.1021/jp984433o DOI
Wasselin-Trupin V, Baldacchino G, Bouffard S, Hickel B. Hydrogen peroxide yields in water radiolysis by high-energy ion beams at constant LET. Radiat Phys Chem. 2002;65(1):53–61. doi:10.1016/S0969-806X(01)00682-X DOI
Crumière F, Vandenborre J, Essehli R, Blain G, Barbet J, Fattahi M. LET effects on the hydrogen production induced by the radiolysis of pure water. Radiat Phys Chem. 2013;82(1):74–79. doi:10.1016/j.radphyschem.2012.07.010 DOI
Stroustrup B The C ++ Programming; 1986.
Radium deposition in human brain tissue: A Geant4-DNA Monte Carlo toolkit study
DNA damage modeled with Geant4-DNA: effects of plasmid DNA conformation and experimental conditions
TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation