TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, validační studie
Grantová podpora
R01 CA187003
NCI NIH HHS - United States
PubMed
34412044
PubMed Central
PMC8639218
DOI
10.1088/1361-6560/ac1f39
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, Geant4-DNA, TOPAS-nBio, plasmid DNA, radiation chemistry, track structure, validation,
- MeSH
- lineární přenos energie MeSH
- metoda Monte Carlo MeSH
- počítačová simulace MeSH
- poškození DNA * MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- validační studie MeSH
- Názvy látek
- voda * MeSH
The chemical stage of the Monte Carlo track-structure simulation code Geant4-DNA has been revised and validated. The root-mean-square (RMS) empirical parameter that dictates the displacement of water molecules after an ionization and excitation event in Geant4-DNA has been shortened to better fit experimental data. The pre-defined dissociation channels and branching ratios were not modified, but the reaction rate coefficients for simulating the chemical stage of water radiolysis were updated. The evaluation of Geant4-DNA was accomplished with TOPAS-nBio. For that, we compared predicted time-dependentGvalues in pure liquid water for·OH, e-aq, and H2with published experimental data. For H2O2and H·, simulation of added scavengers at different concentrations resulted in better agreement with measurements. In addition, DNA geometry information was integrated with chemistry simulation in TOPAS-nBio to realize reactions between radiolytic chemical species and DNA. This was used in the estimation of the yield of single-strand breaks (SSB) induced by137Csγ-ray radiolysis of supercoiled pUC18 plasmids dissolved in aerated solutions containing DMSO. The efficiency of SSB induction by reaction between radiolytic species and DNA used in the simulation was chosen to provide the best agreement with published measurements. An RMS displacement of 1.24 nm provided agreement with measured data within experimental uncertainties for time-dependentGvalues and under the presence of scavengers. SSB efficiencies of 24% and 0.5% for·OH and H·, respectively, led to an overall agreement of TOPAS-nBio results within experimental uncertainties. The efficiencies obtained agreed with values obtained with published non-homogeneous kinetic model and step-by-step Monte Carlo simulations but disagreed by 12% with published direct measurements. Improvement of the spatial resolution of the DNA damage model might mitigate such disagreement. In conclusion, with these improvements, Geant4-DNA/TOPAS-nBio provides a fast, accurate, and user-friendly tool for simulating DNA damage under low linear energy transfer irradiation.
Department of Radiation Oncology Seoul National University Hospital Seoul 03080 Republic of Korea
SLAC National Accelerator Laboratory Menlo Park CA United States of America
Zobrazit více v PubMed
Alizadeh E, Orlando TM and Sanche L 2015. Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA Annu. Rev. Phys. Chem 66 379–98 PubMed
Arce P, Bolst D, Bordage M, Brown JMC, Cirrone P, Cortés‐Giraldo MA, Cutajar D, Cuttone G, Desorgher L, Dondero P, Dotti A, Faddegon B, Fedon C, Guatelli S, Incerti S, Ivanchenko V, Konstantinov D, Kyriakou I, Latyshev G, Le A, Mancini‐Terracciano C, Maire M, Mantero A, Novak M, Omachi C, Pandola L, Perales A, Perrot Y, Petringa G, Quesada JM, Ramos‐Méndez J, Romano F, Rosenfeld AB, Sarmiento LG, Sakata D, Sasaki T, Sechopoulos I, Simpson EC, Toshito T and Wright DH 2021. Report on G4‐Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group Med. Phys 48 19–56 Online: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.14226 PubMed DOI PMC
Aydogan B, Bolch WE, Swarts SG, Turner JE and Marshall DT 2008. Monte Carlo Simulations of Site-Specific Radical Attack to DNA Bases Radiat. Res 169 223–31 PubMed
Bartels DM, Cook AR, Mudaliar M and Jonah CD 2000. Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy J. Phys. Chem. A 104 1686–91
Bernal MA, Bordage MC, Brown JMC, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, Karamitros M, Kyriakou I, Maigne L, Meylan S, Murakami K, Okada S, Payno H, Perrot Y, Petrovic I, Pham QT, Ristic-Fira A, Sasaki T, Štěpán V, Tran HN, Villagrasa C and Incerti S 2015. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med 31 861–74 Online: http://www.sciencedirect.com/science/article/pii/S1120179715010042 PubMed
Bluett VM and Green NJB 2006. Competitive diffusion-influenced reaction of a reactive particle with two static sinks J. Phys. Chem. A 110 4738–52 PubMed
Boscolo D, Krämer M, Durante M, Fuss MC and Scifoni E 2018. TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets Chem. Phys. Lett 698 11–8 Online: 10.1016/j.cplett.2018.02.051 DOI
Bruce WR, Pearson ML and Freedhoff HS 1963. The Linear Energy Transfer Distributions Resulting from Primary and Scattered X-Rays and Gamma Rays with Primary HVL’s from 1.25 mm Cu to 11 mm Pb Radiat. Res 19 606 Online: https://www.jstor.org/stable/3571481?origin=crossref PubMed
Burigo L, Pshenichnov I, Mishustin I, Hilgers G and Bleicher M 2016. Distributions of deposited energy and ionization clusters around ion tracks studied with Geant4 toolkit Phys. Med. Biol 61 3698–711 Online: http://stacks.iop.org/0031-9155/61/i=10/a=3698?key=crossref.6d36b15fba7d535b14de38a5fc3a9b1e PubMed
Buxton GV, Greenstock CL, Helman WP and Ross AB 1988. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in Aqueous Solution J. Phys. Chem. Ref. Data 17 513–886
Clifford P, Green NJB, Oldfield MJ, Pilling MJ and Pimblott SM 1986. Stochastic Models of Multi-species Kinetics in Radiation-induced Spurs J. Chem. Soc., Faraday Trans 182 2673–89
Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser MJ and Jay-Gerin JP 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water - I. Physical and physicochemical aspects Radiat. Phys. Chem 51 229–43
Despré V, Marciniak A, Loriot V, Galbraith MCE, Rouzée A, Vrakking MJJ, Lépine F and Kuleff AI 2015. Attosecond hole migration in benzene molecules surviving nuclear motion J. Phys. Chem. Lett 6 426–31 PubMed
Dingfelder M, Hantke D, Inokuti M and Paretzke HG 1999. Electron inelastic-scattering cross sections in liquid water Radiat. Phys. Chem 53 1–18
Edel S, Terrissol M, Peudon A, Kümmerle E and Pomplun E 2006. Computer simulation of strand break yields in plasmid pBR322: DNA damage following 125I decay Radiat. Prot. Dosimetry 122 136–40 PubMed
Faddegon B, Ramos-Méndez J, Schuemann J, McNamara A, Shin J, Perl J and Paganetti H 2020. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research Phys. Medica 72 114–21 Online: 10.1016/j.ejmp.2020.03.019 PubMed DOI PMC
Friedland W, Schmitt E, Kundrát P, Dingfelder M, Baiocco G, Barbieri S and Ottolenghi A 2017. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping Sci. Rep 7 45161 Online: http://www.nature.com/articles/srep45161 PubMed PMC
Fulford J, Nikjoo H, Goodhead DT and O’Neill P 2001. Yields of SSB and DSB induced in DNA by Al K ultrasoft X-rays and α-particles: comparison of experimental and simulated yields Int. J. Radiat. Biol 77 1053–66 Online: http://informahealthcare.com/doi/abs/10.1080/09553000110069308 PubMed DOI
Green NJB, Pilling MJ and Clifford P 1990. Stochastic Modeling of Fast Kinetics in a Radiation Track Society 94 251–8 Online: http://pubs.acs.org/doi/abs/10.1021/j100364a041 DOI
Hiroki A, Pimblott SM and Laverne JA 2002. Hydrogen peroxide production in the radiolysis of water with high radical scavenger concentrations J. Phys. Chem. A 106 9352–8
Huang J, Schlick T and Vologodskii A 2001. Dynamics of site juxtaposition in supercoiled DNA Proc. Natl. Acad. Sci. U. S. A 98 968–73 PubMed PMC
Huerta Parajón M 2010. HYDROGEN ATOM FORMATION IN THE GAMMA AND HEAVY ION RADIOLYSIS OF AQUEOUS SYSTEMS A thesis submitted to The University of Manchester for the (The University of Manchester; )
Huerta Parajon M, Rajesh P, Mu T, Pimblott SM and LaVerne JA 2008. H atom yields in the radiolysis of water Radiat. Phys. Chem 77 1203–7
Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, GuÈye P, Mantero A, Mascialino B, Moretto P, Nieminen P, Villagrasa C and Zacharatou C 2010a. THE Geant4-DNA project Int. J. Model. Simulation, Sci. Comput 1 157–78
Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, Mascialino B, Champion C, Ivanchenko VN, Bernal M a, Francis Z, Villagrasa C, Baldacchin G, Guèye P, Capra R, Nieminen P and Zacharatou 2010b. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med. Phys 37 4692–708 PubMed
Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, Meylan S, Min CH, Shin WG, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran HN and Brown JMC 2018. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project Med. Phys 45 e722–39 Online: http://doi.wiley.com/10.1002/mp.13048 PubMed DOI
Jones GDD and O’Neill P 1991. Kinetics of radiation-induced Strand break formation in single-stranded pyrimidine polynucleotides in the presence and absence of oxygen; a time-resolved light-scattering study Int. J. Radiat. Biol 59 1127–45 PubMed
Karamitros M, Mantero A, Incerti S, Friedland W, Baldacchino G, Barberet P, Bernal M, Capra R, Champion C, El Bitar Z, Francis Z, Gueye P, Ivanchenko A, Ivanchenko V, Kurashige H, Mascialino B, Moretto P, Nieminen P, Santin G, Seznec H, Tran HN, Villagrasa C and Zacharatou C 2011. Modeling Radiation Chemistry in the Geant4 Toolkit Prog. Nucl. Sci. Technol 2 503–8 Online: http://www.aesj.or.jp/publication/pnst002/data/503-508.pdf
Karamitros M 2012. Extension de l’outil Monte Carlo généraliste Geant4 pour la simulation de la radiolyse de l’eau dans le cadre du projet Geant4-DNA [Doctoral dissertation, L’Université Bordeaux 1] page 164: http://www.theses.fr/2012BOR14629.
Klimczak U, Ludwig DC, Mark F, Rettberg P and Schulte-Frohlinde D 1993. Irradiation of plasmid and phage DNA in water-alcohol mixtures: Strand breaks and lethal damage as a function of scavenger concentration Int. J. Radiat. Biol 64 497–510 PubMed
Kreipl MS, Friedland W and Paretzke HG 2009. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation Radiat. Environ. Biophys 48 11–20 Online: http://link.springer.com/10.1007/s00411-008-0194-8 PubMed DOI
Kuleff AI, Kryzhevoi NV., Pernpointner M and Cederbaum LS 2016. Core Ionization Initiates Subfemtosecond Charge Migration in the Valence Shell of Molecules Phys. Rev. Lett 117 1–5 PubMed
Kumar A, Becker D, Adhikary A and Sevilla MD 2019. Reaction of electrons with dna: Radiation damage to radiosensitization Int. J. Mol. Sci 20 PubMed PMC
Kümmerle EA and Pomplun E 2005. A computer-generated supercoiled model of the pUC19 plasmid Eur. Biophys. J 34 13–8 Online: http://link.springer.com/10.1007/s00249-004-0431-2 PubMed DOI
Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, Sarramia D and Incerti S 2018a. Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry Phys. Medica 48 135–45 Online: 10.1016/j.ejmp.2018.02.011 PubMed DOI
Lampe N, Karamitros M, Breton V, Brown JMC, Sakata D, Sarramia D and Incerti S 2018b. Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell Phys. Medica 48 146–55 Online: 10.1016/j.ejmp.2017.12.008 PubMed DOI
Laverne JA 2000. OH Radicals and Oxidizing Products in the Gamma Radiolysis of Water Source Radiat. Res. Radiat. Res. Gamma Radiolysis Water. Radiat. Res 53–196 Online: http://www.jstor.org/stable/3580071 PubMed
Ma J, Laverne JA and Mostafavi M 2015. Scavenging the Water Cation in Concentrated Acidic Solutions J. Phys. Chem. A 119 10629–36 PubMed
Meylan S, Incerti S, Karamitros M, Tang N, Bueno M, Clairand I and Villagrasa C 2017. Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA Sci. Rep 7 1–15 PubMed PMC
Meylan S, Vimont U, Incerti S, Clairand I and Villagrasa C 2015. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool Comput. Phys. Commun
Milligan JR, Aguilera JA and Ward JF 1993. Variation of Single-Strand Break Yield with Scavenger Concentration for Plasmid DNA Irradiated in Aqueous Solution vol 133 Online: http://www.jstor.org/stable/3578350?origin=crossref PubMed
Milligan JR and Ward JF 1994. Yield of single-strand breaks due to attack on DNA by Scavenger-derived radicals Radiat. Res 137 295–9 PubMed
Milligan JR, Wu CCL, Ng JYY, Aguilera JA and Ward JF 1996. Characterization of the reaction rate coefficient of DNA with the hydroxyl radical Radiat. Res 146 510–3 Online: http://www.jstor.org/stable/3579551 PubMed
Moiseenko VV, Hamm RN, Waker AJ and Prestwich WV. 1998. The cellular environment in computer simulations of radiation-induced damage to dna Radiat. Environ. Biophys 37 167–72 PubMed
Nelder JA and Mead R 1965. A Simplex Method for Function Minimization Comput. J 7 308–13 Online: https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/8.1.27 DOI
Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D and Uehara S 2016. Radiation track, DNA damage and response—a review Reports Prog. Phys 79 116601 Online: http://stacks.iop.org/0034-4885/79/i=11/a=116601?key=crossref.97c4492091d158513ac8241fafa018bf PubMed
Ogura H and Hamill WH 1973. Positive hole migration in pulse-irradiated water and heavy water J. Phys. Chem 77 2952–4
El Omar AK, Schmidhammer U, Jeunesse P, Larbre JP, Lin M, Muroya Y, Katsumura Y, Pernot P and Mostafavi M 2011. Time-dependent radiolytic yield of OH• radical studied by picosecond pulse radiolysis J. Phys. Chem. A 115 12212–6 Online: http://pubs.acs.org/doi/pdf/10.1021/jp208075v PubMed DOI
Önal AM, Lemaire DGE, Bothe E and Schulte-Frohlinde D 1988. γradiolysis of poly(a) in aqueous solution: Efficiency of Strand break formation by primary water radicals Int. J. Radiat. Biol 53 787–96 PubMed
Pastina B and LaVerne JA 1999. Hydrogen Peroxide Production in the Radiolysis of Water with Heavy Ions J. Phys. Chem. A 103 1592–7 Online: http://pubs.acs.org/doi/abs/10.1021/jp984433o DOI
Pastina B, Laverne JA and Pimblott SM 1999. Dependence of Molecular Hydrogen Formation in Water on Scavengers of the Precursor to the Hydrated Electron J. Phys. Chem. A 103 5841–6 Online: https://pubs.acs.org/doi/pdf/10.1021/jp991222q DOI
Perkins SJ 1986. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences Eur. J. Biochem 157 169–80 Online: http://www.ncbi.nlm.nih.gov/pubmed/3709531 PubMed
Perl J, Shin J, Schümann J, Faddegon B and Paganetti H 2012. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications Med. Phys 39 6818–37 Online: http://doi.wiley.com/10.1118/1.4758060 PubMed DOI PMC
Perry CC, Ramos-Méndez J and Milligan JR 2021. Boronated Condensed DNA as a Heterochromatic Radiation Target Model Biomacromolecules acs.biomac.1c00106 Online: https://pubs.acs.org/doi/10.1021/acs.biomac.1c00106 PubMed DOI
Perry CC, Ramos-Méndez J and Milligan JR 2020. DNA condensation with a boron-containing cationic peptide for modeling boron neutron capture therapy Radiat. Phys. Chem 166 108521 Online: https://linkinghub.elsevier.com/retrieve/pii/S0969806X19311417 PubMed PMC
Pimblott SM 1992. Investigation of various factors influencing the effect of scavengers on the radiation chemistry following the high-energy electron radiolysis of water J. Phys. Chem 96 4485–91 Online: https://pubs.acs.org/doi/pdf/10.1021/j100190a066 DOI
Pimblott SM and LaVerne JA 1997. Stochastic Simulation of the Electron Radiolysis of Water and Aqueous Solutions J. Phys. Chem. A 101 5828–38 Online: http://pubs.acs.org/doi/abs/10.1021/jp970637d DOI
Pimblott SM, LaVerne JA, Bartels DM and Jonah CD 1996. Reconciliation of Transient Absorption and Chemically Scavenged Yields of the Hydrated Electron in Radiolysis J. Phys. Chem 100 9412–5 Online: https://pubs.acs.org/doi/pdf/10.1021/jp960816f DOI
Pimblott SM, Pilling MJ and Green NJB 1991. Stochastic models of spur kinetics in water Int. J. Radiat. Appl. Instrumentation Part 37 377–88
Plante I and Devroye L 2017. Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations Radiat. Phys. Chem 139 157–72 Online: 10.1016/j.radphyschem.2017.03.021 DOI
Ramos-Méndez J, Domínguez-Kondo N, Schuemann J, McNamara A, Moreno-Barbosa E and Faddegon B 2020. LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH Therapy Radiat. Res 194 5–7 Online: https://bioone.org/journals/radiation-research/volume-194/issue-4/RADE-20-00084.1/LET-Dependent-Intertrack-Yields-in-Proton-Irradiation-at-Ultra-High/10.1667/RADE-20-00084.1.full PubMed DOI PMC
Ramos-Méndez J, Perl J, Schuemann J, McNamara A, Paganetti H and Faddegon B 2018. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio Phys. Med. Biol 63 105014 Online: http://iopscience.iop.org/article/10.1088/1361-6560/aac04c PubMed DOI PMC
Ramos‐Méndez J, Shin W, Karamitros M, Domínguez‐Kondo J, Tran NH, Incerti S, Villagrasa C, Perrot Y, Štěpán V, Okada S, Moreno‐Barbosa E and Faddegon B 2020. Independent reaction times method in Geant4‐DNA: Implementation and performance Med. Phys 47 5919–30 Online: https://onlinelibrary.wiley.com/doi/10.1002/mp.14490 PubMed DOI PMC
Ritchie RH, Hamm RN, Turner JE and Bolch WE 1994. Interactions of Low-Energy Electrons with Condensed Matter: Relevance for Track Structure Computational Approaches in Molecular Radiation Biology (Boston, MA: Springer US; ) pp 33–47 Online: http://link.springer.com/10.1007/978-1-4757-9788-6_4 DOI
Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, Bolst D, Bordage M-CC, Breton V, Brown JMC, Francis Z, Ivanchenko V, Meylan S, Murakami K, Okada S, Petrovic I, Ristic-Fira A, Santin G, Sarramia D, Sasaki T, Shin W-GG, Tang N, Tran HN, Villagrasa C, Emfietzoglou D, Nieminen P, Guatelli S and Incerti S 2019. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA Phys. Medica 62 152–7 Online: 10.1016/j.ejmp.2019.04.010 PubMed DOI
Sanguanmith S, Meesungnoen J and Jay-Gerin JP 2013. Time-dependent yield of OH radicals in the low linear energy transfer radiolysis of water between 25 and 350 °C Chem. Phys. Lett 588 82–6 Online: 10.1016/j.cplett.2013.09.057 DOI
Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S and Faddegon B 2018. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology Radiat. Res 191 125 Online: http://www.rrjournal.org/doi/pdf/10.1667/RR15226.1 PubMed DOI PMC
Shin W-G, Ramos-Mendez J, Faddegon B, Tran HN, Villagrasa C, Perrot Y, Okada S, Karamitros M, Emfietzoglou D, Kyriakou I, Bordage MC, Sakata D, Guatelli S, Choi HJ, Min CH, Lee SB and Incerti S 2019. Evaluation of the influence of physical and chemical parameters on water radiolysis simulations under MeV electron irradiation using Geant4-DNA J. Appl. Phys 126 114301 Online: http://aip.scitation.org/doi/10.1063/1.5107511 DOI
Shin WG, Bordage MC, Emfietzoglou D, Kyriakou I, Sakata D, Min CH, Lee SB, Guatelli S and Incerti S 2018. Development of a new Geant4-DNA electron elastic scattering model for liquid-phase water using the ELSEPA code J. Appl. Phys 124 Online: 10.1063/1.5047751 DOI
Shiraishi H, Katsumura Y, Hiroishi D, Ishigure K and Washio M 1988. Pulse-radiolysis study on the yield of hydrated electron at elevated temperatures J. Phys. Chem 92 3011–7 Online: http://pubs.acs.org/doi/abs/10.1021/j100321a061 DOI
Shweta H and Sen S 2018. Dynamics of water and ions around DNA: What is so special about them? J Biosci 43 499–518 PubMed
Štěpán V and Davídková M 2014. RADAMOL tool: Role of radiation quality and charge transfer in damage distribution along DNA oligomer Guest editors: Solov’yov Andrey V, Mason Nigel, Limão-Vieira Paulo, Smialek-Telega Malgorzata Eur. Phys. J. D 68
Sultana A, Meesungnoen J and Jay-Gerin JP 2020. Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 °c Phys. Chem. Chem. Phys 22 7430–9 PubMed
Tachiya M 1983. Theory of diffusion-controlled reactions: Formulation of the bulk reaction rate in terms of the pair probability Radiat. Phys. Chem 21 167–75 Online: https://linkinghub.elsevier.com/retrieve/pii/0146572483901437
Tomita H, Kai M, Kusama T and Aoki Y 1995. Strand Break Formation in Plasmid DNA Irradiated in Aqueous Solution: Effect of Medium Temperature and Hydroxyl Radical Scavenger Concentration. J. Radiat. Res 36 46–55 Online: https://academic.oup.com/jrr/article-lookup/doi/10.1269/jrr.36.46 PubMed DOI
Tomita H, Kai M, Kusama T and Ito A 1998. Monte Carlo simulation of DNA strand-break induction in supercoiled plasmid pBR322 DNA from indirect effects Radiat. Environ. Biophys 36 235–41 Online: http://link.springer.com/10.1007/s004110050077 PubMed DOI
Tomita H, Kai M, Kusama T and Ito A 1997. Monte Carlo simulation of physicochemical processes of liquid water radiolysis Radiat. Environ. Biophys 36 105–16 Online: http://link.springer.com/10.1007/s004110050061 PubMed DOI
Tran HN, Ramos‐Méndez J, Shin W, Perrot Y, Faddegon B, Okada S, Karamitros M, Davídková M, Štěpán V, Incerti S and Villagrasa C 2021. Assessment of DNA damage with an adapted independent reaction time approach implemented in Geant4‐DNA for the simulation of diffusion‐controlled reactions between radio‐induced reactive species and a chromatin fiber Med. Phys 48 890–901 Online: https://onlinelibrary.wiley.com/doi/10.1002/mp.14612 PubMed DOI PMC
Udovičić L, Mark F, Bothe E and Udovicic L 1994. Yields of Single-Strand Breaks in Double-Stranded Calf Thymus DNA Irradiated in Aqueous Solution in the Presence of Oxygen and Scavengers Radiat. Res 140 166 Online: https://www.jstor.org/stable/3578899?origin=crossref PubMed
Uehara S and Nikjoo H 2006. Monte Carlo simulation of water radiolysis for low-energy charged particles. J. Radiat. Res 47 69–81 PubMed
Vologodskii AV and Cozzarelli NR 1994. Conformational and thermodynamic properties of supercoiled DNA Annu. Rev. Biophys. Biomol. Struct 23 609. PubMed
Wang F, Schmidhammer U, Larbre JP, Zong Z, Marignier JL and Mostafavi M 2018. Time-dependent yield of the hydrated electron and the hydroxyl radical in D2O: A picosecond pulse radiolysis study Phys. Chem. Chem. Phys 20 15671–9 PubMed
Wardman P. Radiotherapy Using High-Intensity Pulsed Radiation Beams (FLASH): A Radiation-Chemical Perspective. Radiat. Res. 2020;194 Online: https://bioone.org/journals/radiation-research/volume-194/issue-6/RADE-19-00016/Radiotherapy-Using-High-Intensity-Pulsed-Radiation-Beams-FLASH--A/10.1667/RADE-19-00016.full. PubMed DOI
Yanisch-Perron C, Vieira J and Messing J 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors Gene 33 103–19 Online: https://linkinghub.elsevier.com/retrieve/pii/0378111985901209 PubMed
Zhu H, McNamara AL, McMahon SJ, Ramos-Mendez J, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H and Schuemann J 2020a. Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio Radiat. Res 194 9 Online: http://www.rrjournal.org/doi/10.1667/RR15531.1 PubMed DOI PMC
Zhu H, McNamara AL, Ramos-Mendez J, McMahon SJ, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H and Schuemann J 2020b. A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio Phys. Med. Biol 65 085015 Online: https://iopscience.iop.org/article/10.1088/1361-6560/ab7a6b PubMed DOI PMC