Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe

. 2021 Jul 22 ; 11 (1) : 15005. [epub] 20210722

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34294811
Odkazy

PubMed 34294811
PubMed Central PMC8298398
DOI 10.1038/s41598-021-94491-z
PII: 10.1038/s41598-021-94491-z
Knihovny.cz E-zdroje

Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.

ARC Centre of Excellence for Mathematical and Statistical Frontiers School of Mathematical Sciences The University of Adelaide Adelaide SA 5005 Australia

Archaeo and Palaeogenetics Group Institute for Archaeological Sciences Eberhard Karls University Tübingen 72070 Tübingen Germany

Archeolodzy org Foundation Wrocław Poland

Departament de Prehistòria Arqueologia i Història Antiga Universitat de València Valencia Spain

Department of Anthropology Hacettepe University 06800 Ankara Turkey

Department of Archaeogenetics Max Planck Institute for the Science of Human History 07745 Jena Germany

Department of Archaeology and History of Art Koç University 34450 Istanbul Turkey

Department of Archaeology Mustafa Kemal University 31060 Alahan Antakya Hatay Turkey

Department of Archaeology School of Culture and Society Aarhus University 8270 Højbjerg Denmark

Department of Classics Sapienza University of Rome 00185 Rome Italy

Department of Geological Sciences University of Cape Town Cape Town South Africa

Department of Prehistory Institute of Archaeology CAS Prague Czech Republic

Eurasia Department German Archaeological Institute Berlin Germany

Grupo de Investigación en Prehistoria IT 1223 19 IKERBASQUE Basque Foundation for Science Vitoria Spain

Inrap Grand Ouest Bourguébus France

Institute for the Study of the Ancient World New York University New York NY 10028 USA

Institute of Archaeology University of Wrocław Wrocław Poland

Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra Barcelona Spain

Ludwig Maximilian University Munich 80799 Munich Germany

MARQ Archaeological Museum of Alicante Alicante Spain

National Institute of Archaeology with Museum Bulgarian Academy of Sciences 1000 Sofia Bulgaria

School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia

State Office for Heritage Management and Archaeology Saxony Anhalt and State Museum of Prehistory Halle Germany

Thuringian State Office for Heritage Management and Archeology Weimar Germany

Université de Bordeaux CNRS PACEA UMR 5199 33615 Pessac France

Université de Rennes 1 CNRS CReAAH UMR 6566 Rennes France

Zobrazit více v PubMed

Brown WM. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc. Natl. Acad. Sci. USA. 1980;77(6I):3605–3609. doi: 10.1073/pnas.77.6.3605. PubMed DOI PMC

Jobling MA, Tyler-Smith C. The human Y chromosome: An evolutionary marker comes of age. Nat. Rev. Genet. 2003;4(8):598–612. doi: 10.1038/nrg1124. PubMed DOI

Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325(6099):31–36. doi: 10.1038/325031a0. PubMed DOI

Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ. Harvesting the fruit of the human mtDNA tree. Trends Genet. 2006;22(6):339–345. doi: 10.1016/j.tig.2006.04.001. PubMed DOI

Pakendorf B, Stoneking M. Mitochondrial DNA and human evolution. Annu. Rev. Genom. Hum. Genet. 2005;6(1):165–183. doi: 10.1146/annurev.genom.6.080604.162249. PubMed DOI

Underhill PA, Kivisild T. Use of y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu. Rev. Genet. 2007;41:539–564. doi: 10.1146/annurev.genet.41.110306.130407. PubMed DOI

Kivisild T. The study of Y chromosome variation through ancient DNA. Hum. Genet. 2017;136(5):529–546. doi: 10.1007/s00439-017-1773-sz. PubMed DOI PMC

Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, Salas A, Oppenheimer S, Macaulay V, Richards MB. Correcting for purifying selection: An improved human mitochondrial molecular clock. Am. J. Hum. Genet. 2009;84(6):740–759. doi: 10.1016/j.ajhg.2009.05.001. PubMed DOI PMC

Finnilä S, Lehtonen MS, Majamaa K. Phylogenetic network for European mtDNA. Am. J. Hum. Genet. 2001;68(6):1475–1484. doi: 10.1086/320591. PubMed DOI PMC

Posth C, Renaud G, Mittnik A, Drucker DG, Rougier H, Cupillard C, Valentin F, Thevenet C, Furtwängler A, Wißing C, et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a late glacial population turnover in Europe. Curr. Biol. 2016;26(6):827–833. doi: 10.1016/j.cub.2016.01.037. PubMed DOI

Helgason A, Einarsson AW, Guðmundsdóttir VB, Sigurðsson Á, Gunnarsdóttir ED, Jagadeesan A, Ebenesersdóttir SS, Kong A, Stefánsson K. The Y-chromosome point mutation rate in humans. Nat. Genet. 2015;47(5):453–457. doi: 10.1038/ng.3171. PubMed DOI

Scally A, Durbin R. Revising the human mutation rate: Implications for understanding human evolution. Nat. Rev. Genet. 2012;13(10):745–753. doi: 10.1038/nrg3295. PubMed DOI

Karmin M, Saag L, Vicente M, Wilson Sayres MA, Järve M, Talas UG, Rootsi S, Ilumäe AM, Mägi R, Mitt M, et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 2015;25(4):459–466. doi: 10.1101/gr.186684.114. PubMed DOI PMC

Zeng TC, Aw AJ, Feldman MW. Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck. Nat. Commun. 2018;9(1):1–2. doi: 10.1038/s41467-018-04375-6. PubMed DOI PMC

Olalde I, Mallick S, Patterson N, Rohland N, Villalba-Mouco V, Silva M, Dulias K, Edwards CJ, Gandini F, Pala M, et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science. 2019;363(6432):1230–1234. doi: 10.1126/science.aav4040. PubMed DOI PMC

Deguilloux M-F, Mendisco F. Ancient DNA: A window to the past of Europe. Hum. Hered. 2013;76(3–4):121–132. doi: 10.1159/000356933. PubMed DOI

Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, Furtwängler A, Haak W, Meyer M, Mittnik A, et al. The genetic history of Ice Age Europe. Nature. 2016;534(7606):200–205. doi: 10.1038/nature17993. PubMed DOI PMC

Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlström T, Vinner L, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522(7555):167–172. doi: 10.1038/nature14507. PubMed DOI

Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt G, Nordenfelt S, Harney E, Stewardson K, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522(7555):207–211. doi: 10.1038/nature14317. PubMed DOI PMC

Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, Rohland N, Mallick S, Szécsényi-Nagy A, Mittnik A, et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018;555(7695):190–196. doi: 10.1038/nature26164. PubMed DOI PMC

Bramanti B, Thomas MG, Haak W, Unterlaender M, Jores P, Tambets K, Antanaitis-Jacobs I, Haidle MN, Jankauskas R, Kind CJ, et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science. 2009;326(5949):137–140. doi: 10.1126/science.1176869. PubMed DOI

Haak W, Balanovsky O, Sanchez JJ, Koshel S, Zaporozhchenko V, Adler CJ, der Sarkissian CSI, Brandt G, Schwarz C, Nicklisch N, et al. Ancient DNA from European early Neolithic farmers reveals their near eastern affinities. PLoS Biol. 2010;8:11. doi: 10.1371/journal.pbio.1000536. PubMed DOI PMC

Brandt G, Haak W, Adler CJ, Roth C, Szécsényi-Nagy A, Karimnia S, Möller-Rieker S, Meller H, Ganslmeier R, Friederich S, et al. Ancient DNA reveals key stages in the formation of Central European mitochondrial genetic diversity. Science. 2013;342(6155):257–261. doi: 10.1126/science.1241844. PubMed DOI PMC

Lipson M, Szécsényi-Nagy A, Mallick S, Pósa A, Stégmár B, Keerl V, Rohland N, Stewardson K, Ferry M, Michel M, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551(7680):368–372. doi: 10.1038/nature24476. PubMed DOI PMC

Higgins D, Rohrlach AB, Kaidonis J, Townsend G, Austin JJ. Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies. PLoS One. 2015;10:5. doi: 10.1371/journal.pone.0126935. PubMed DOI PMC

Llamas B, Valverde G, Fehren-Schmitz L, Weyrich LS, Cooper A, Haak W. From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci. Technol. Archaeol. Res. 2017;3(1):1–14. doi: 10.1080/20548923.2016.1258824. DOI

Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev AA, Johnson PLF, Aximu-Petri A, Prüfer K, de Filippo C, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514(7523):445–449. doi: 10.1073/pnas.1221359110. PubMed DOI PMC

Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, Harney E, Stewardson K, Fernandes D, Novak M, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528(7583):499–503. doi: 10.1038/nature25778. PubMed DOI PMC

Poznik GD, Henn BM, Yee MC, Sliwerska E, Euskirchen GM, Lin AA, Snyder M, Quintana-Murci L, Kidd JM, Underhill PA, et al. Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science. 2013;341(6145):562–565. doi: 10.1126/science.1237619. PubMed DOI PMC

Cruz-Dávalos DI, Nieves-Colón MA, Sockell A, Poznik GD, Schroeder H, Stone AC, Bustamante CD, Malaspinas AS, Ávila-Arcos MC. In-solution Y-chromosome capture-enrichment on ancient DNA libraries. BMC Genom. 2018;19(1):1–16. doi: 10.1186/s12864-018-4945-x. PubMed DOI PMC

Petr M, Hajdinjak M, Fu Q, Essel E, Rougier H. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science. 2020;369(6511):1653–1656. doi: 10.1126/science.abb6460. PubMed DOI

Lacan M, Keyser C, Ricaut F-X, Brucato N, Duranthon F, Guilaine J, Crubezy E, Ludes B. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc. Natl. Acad. Sci. 2011;108(24):9788–9791. doi: 10.1073/pnas.1100723108. PubMed DOI PMC

Ruiz-linares A, Orti D, Figueroa M, Mesa N, Mu JG, Bedoya G, Vélez ND, Garci LF, Pérez-lezaun A, Bertranpetit J, et al. Microsatellites provide evidence for Y chromosome diversity among the founders of the New World. Proc. Natl. Acad. Sci. 1999;96:6312–6317. doi: 10.1073/pnas.96.11.6312. PubMed DOI PMC

Sengupta S, Zhivotovsky LA, King R, Mehdi SQ, Edmonds CA, Chow CET, Lin AA, Mitra M, Sil SK, Ramesh A, et al. Polarity and temporality of high-resolution Y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists. Am. J. Hum. Genet. 2006;78(2):202–221. doi: 10.1086/499411. PubMed DOI PMC

Rai N, Chaubey G, Tamang R, Pathak AK, Singh VK, Karmin M, Singh M, Rani DS, Anugula S, Yadav BK, et al. The phylogeography of Y-chromosome haplogroup H1a1a-M82 reveals the likely Indian origin of the European Romani populations. PLoS One. 2012;7:11. doi: 10.1371/journal.pone.0048477. PubMed DOI PMC

Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, Fernandes D, Novak M, Gamarra B, Sirak K, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536(7617):419–424. doi: 10.1038/nature19310. PubMed DOI PMC

Hofmanová Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y, Díez-Del-Molino D, Van Dorp L, López S, Kousathanas A, Link V, et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA. 2016;113(25):6886–6891. doi: 10.1073/pnas.1523951113. PubMed DOI PMC

Rivollat M, Jeong C, Schiffels S, Küçükkalıpçı İ, Pemonge M-H, Rohrlach AB, Alt KW, Binder D, Friederich S, Ghesquière E, et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 2020;6:22. doi: 10.1126/sciadv.aaz5344. PubMed DOI PMC

Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, Olalde I, Broomandkhoshbacht N, Candilio F, Cheronet O, et al. The genomic history of southeastern Europe. Nature. 2018;555(7695):197–203. doi: 10.1038/nature16152. PubMed DOI PMC

Brunel S, Andrew Bennett E, Cardin L, Garraud D, Emam HB, Beylier A, Boulestin B, Chenal F, Ciesielski E, Convertini F, et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl. Acad. Sci. USA. 2020;117(23):12791–12798. doi: 10.1073/pnas.1918034117. PubMed DOI PMC

Skourtanioti E, Erdal YS, Frangipane M, Balossi Restelli F, Yener KA, Pinnock F, Matthiae P, Özbal R, Schoop U-D, Guliyev F, et al. Genomic history of neolithic to bronze age Anatolia, Northern Levant, and Southern Caucasus. Cell. 2020;181(5):1158–1175. doi: 10.1016/j.cell.2020.04.044. PubMed DOI

Price TD. Europe’s First Farmers. Cambridge University Press; 2009. The introduction of farming in northern Europe; pp. 260–300.

Jeunesse C. Pour une origine occidentale de la culture de Michelsberg? Mater. Archäol. Baden-württemb. 1998;43:29–45.

Küßner M. Thüringen in der ersten Hälfte des 4. vorchristlichen Jahrtausends. Alteuropäische Forschungen. 2016;9:75–82.

Beau A, Rivollat M, Réveillas H, Pemonge MH, Mendisco F, Thomas Y, Lefranc P, Deguilloux MF. Multi-scale ancient DNA analyses confirm the western origin of Michelsberg farmers and document probable practices of human sacrifice. PLoS One. 2017;12:7. doi: 10.1371/journal.pone.0179742. PubMed DOI PMC

Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, Mallick S, Lazaridis I, Nakatsuka N, Olalde I, Lipson M, et al. The formation of human populations in South and Central Asia. Science. 2019;365:6457. doi: 10.1126/science.aat7487. PubMed DOI PMC

Antonio M, Gao Z, Moots H, Lucci M. Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science. 2019;366(6466):708–714. doi: 10.1126/science.aay6826. PubMed DOI PMC

Cassidy LM, Maoldúin RÓ, Kador T, Lynch A, Jones C, Woodman PC, Murphy E, Ramsey G, Dowd M, Noonan A, et al. A dynastic elite in monumental Neolithic society. Nature. 2020;582(7812):384–388. doi: 10.1038/s41586-020-2378-6. PubMed DOI PMC

Fernandes DM, Mittnik A, Olalde I, Lazaridis I, Cheronet O, Rohland N, Mallick S, Bernardos R, Broomandkhoshbacht N, Carlsson J, et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 2020;4(3):334–345. doi: 10.1038/s41559-020-1102-0. PubMed DOI PMC

Genomes Project A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14(6):587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32(1):268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Freeman, L., Brimacombe, C. S., & Elhaik E. aYChr-DB: a database of ancient human Y haplogroups. NAR Genom. Bioinformat.2(4), 10.1093/nargab/lqaa081 (2020). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Earliest modern human genomes constrain timing of Neanderthal admixture

. 2025 Feb ; 638 (8051) : 711-717. [epub] 20241212

Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

. 2023 Mar ; 615 (7950) : 117-126. [epub] 20230301

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...