Two Shared Icosahedral Metallacarboranes through Iron: A Joint Experimental and Theoretical Refinement of Mössbauer Spectrum in [Fe(1,2-C2B9H11)2]Cs

. 2023 Apr 18 ; 8 (15) : 13993-14004. [epub] 20230407

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37091389

Mössbauer and X-ray photoelectron spectroscopies (XPS) are complemented with high-level quantum-chemical computations in the study of the geometric and electronic structure of the paramagnetic salt of the metallacarborane sandwich complex [Fe(1,2-C2B9H11)2]Cs = FeSanCs. Experimental 57Fe isomer shifts and quadrupole splitting parameters are compared with the theoretical prediction, with good agreement. The appearance of two sets of Cs(3d) doublets in the XPS spectrum, separated by 2 eV, indicates that Cs has two different chemical environments due to ease of the Cs(+) cation moving around the sandwich complex with low-energy barriers, as confirmed by quantum-chemical computations. Several minimum-energy geometries of the FeSanCs structure with the corresponding energies and Mössbauer parameters are discussed, in particular the atomic charges and spin population and the surroundings of the Fe atom in the complex. The Mössbauer spectra were taken at different temperatures showing the presence of a low-spin Fe atom with S = 1/2 and thus confirming a paramagnetic FeIII species.

Zobrazit více v PubMed

Adams R. D. Foreword. J. Organomet. Chem. 2001, 637–639, 1.10.1016/s0022-328x(01)00875-0. DOI

Haaland A. Molecular structure and bonding in the 3d metallocenes. Acc. Chem. Res. 1979, 12, 415–422. 10.1021/ar50143a006. DOI

Hnyk D.; Holub J.; Jelínek T.; Macháček J.; Londesborough M. G. S. Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collect. Czech. Chem. Commun. 2010, 75, 1115–1123. 10.1135/cccc2010073. DOI

Eyrilmez S. M.; Bernhardt E.; Dávalos J. Z.; Lepšík M.; Hobza P.; Assaf K. I.; Nau W.; Holub J.; Oliva-Enrich J. M.; Fanfrlík J.; Hnyk D. Binary twinned-icosahedral [B21H18]− interacts with cyclodextrins as a precedent for its complexation with other organic motifs. Phys. Chem. Chem. Phys. 2017, 19, 11748–11752. 10.1039/c7cp01074e. PubMed DOI

Assaf K.; Holub J.; Bernhardt E.; Oliva-Enrich J. M.; Fernández Pérez M. I.; Canle M.; Santaballa J. A.; Fanfrlík J.; Hnyk D.; Nau W. Face-fusion of icosahedral boron hydride increases affinity to γ-cyclodextrin: closo,closo-[B21H18]− as an anion with very low free energy of dehydration. ChemPhysChem 2020, 21, 971–976. 10.1002/cphc.201901225. PubMed DOI PMC

Dobrott R. D.; Friedman L. B.; Lipscomb W. N. Molecular and crystal structure of B20H16. J. Chem. Phys. 1964, 40, 866–872. 10.1063/1.1725218. DOI

Schleyer P. v. R.; Maerker Ch.; Dransfeld A.; Jiao H.; van Eikema Hommes N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. 10.1021/ja960582d. PubMed DOI

Holub J.; Melichar P.; Růžičková Z.; Vrána J.; Wann D. A.; Fanfrlík J.; Hnyk D.; Růžička A. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing. Dalton Trans. 2017, 46, 13714–13719. 10.1039/c7dt02845h. PubMed DOI

Hawthorne M. F.; Young D. C.; Wegner P. A. Carbametallic Boron Hydride Derivatives. I. Apparent analogs of ferrocene and ferricinium ion. J. Am. Chem. Soc. 1965, 87, 1818–1819. 10.1021/ja01086a053. DOI

Hawthorne M. F.; Andrews T. D. Carborane analogues of cobalticinium ion. Chem. Commun. 1965, 443–444. 10.1039/c19650000443. DOI

Werner H. At least 60 years of ferrocene: the discovery and rediscovery of the sandwich complexes. Angew. Chem., Int. Ed. 2012, 51, 6052–6058. 10.1002/anie.201201598. PubMed DOI

Malaspina D. C.; Vinas C.; Teixidor F.; Faraudo J. Atomistic simulations of COSAN: amphiphiles without a head-and-tail design display ″head and tail″ surfactant behavior. Angew. Chem., Int. Ed. 2020, 59, 3088–3092. 10.1002/anie.201913257. PubMed DOI

Poater J.; Viñas C.; Bennour I.; Escayola S.; Solà M.; Teixidor F. Too Persistent to give up: aromaticity in boron clusters survives radical structural changes. J. Am. Chem. Soc. 2020, 142, 9396–9407. 10.1021/jacs.0c02228. PubMed DOI

Xavier J. A. M.; Viñas C.; Lorenzo E.; García-Mendiola T.; Teixidor F. Potential application of metallacarboranes as an internal reference: an electrochemical comparative study to ferrocene. Chem. Commun. 2022, 58, 4196–4199. 10.1039/d2cc00424k. PubMed DOI

Olejniczak A. B.; Mucha P.; Grüner B.; Lesnikowski Z. J. DNA-dinucleotides bearing a 3′,3′-cobalt- or 3′,3′-iron-1,2,1′,2′-dicarbollide complex. Organometallics 2007, 26, 3272–3274. 10.1021/om070102z. DOI

Wojtczak B. J.; Andrysiak A.; Grüner B.; Lesnikowski Z. J. Chemical ligation”: a versatile method for nucleoside modification with boron clusters. Chem.—Eur. J. 2008, 14, 10675–10682. 10.1002/chem.200801053. PubMed DOI

Lesnikowski Z. J. Boron units as pharmacophores - new applications and opportunities of boron cluster chemistry. Collect. Czech. Chem. Commun. 2007, 72, 1646–1658. 10.1135/cccc20071646. DOI

García-Mendiola T.; Bayon-Pizarro V.; Zaulet A.; Fuentes I.; Pariente F.; Teixidor F.; Viñas C.; Lorenzo E. Metallacarboranes as tunable redox potential electrochemical indicators for screening of gene mutation. Chem. Sci. 2016, 7, 5786–5797. 10.1039/c6sc01567k. PubMed DOI PMC

Kodr D.; Yenice C. P.; Simonova A.; Saftić D. P.; Pohl R.; Sýkorová V.; Ortiz M.; Havran L.; Fojta M.; Lesnikowski Z. J.; O’Sullivan C. K.; et al. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021, 143, 7124–7134. 10.1021/jacs.1c02222. PubMed DOI

Buades A. B.; Pereira L. C. J.; Vieira B. J. C.; Cerdeira A. C.; Waerenborgh J. C.; Pinheiro T.; Matos A. P. A.; Pinto C. G.; Guerreiro J. F.; Mendes F.; Valic S.; Teixidor F.; Viñas C.; Marques F. The Mössbauer effect using 57Fe-ferrabisdicarbollide ([o-57FeSan]−): a glance into the potential of a low-dose approach for glioblastoma radiotherapy. Inorg. Chem. Front. 2022, 9, 1490–1503. 10.1039/d1qi01513c. DOI

Bennour I.; Ramos M. N.; Nuez-Martínez M.; Xavier J. A. M.; Buades A. B.; Sillanpää R.; Teixidor F.; Choquesillo-Lazarte D.; Romero I.; Martínez-Medina M.; Viñas C. Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. 10.1039/d2dt01015a. PubMed DOI

Srb P.; Svoboda M.; Benda L.; Lepšík M.; Tarábek J.; Šícha V.; Grüner B.; Grantz-Šašková K.; Brynda J.; Řezáčová P.; Konvalinka J.; Veverka V. Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 5661–5673. 10.1039/c9cp00416e. PubMed DOI

Sivaev I. B.; Bregadze V. I.; Kuznetsov N. T. Derivatives of the closo-dodecaborate anion and their application in medicine. Russ. Chem. Bull. 2002, 51, 1362–1374. 10.1023/a:1020942418765. DOI

Pennanen T. O.; Macháček J.; Taubert S.; Vaara J.; Hnyk D. Ferrocene-like iron bis(dicarbollide), [3-FeIII-(1,2-C2B9H11)2]−. The first experimental and theoretical refinement of a paramagnetic 11B NMR spectrum. Phys. Chem. Chem. Phys. 2010, 12, 7018–7025. 10.1039/b923891c. PubMed DOI

Bühl M.; Holub J.; Hnyk D.; Macháček J. Computational studies of structures and properties of metallaboranes. 2. Transition-metal dicarbollide complexes. Organometallics 2006, 25, 2173–2181. 10.1021/om051025f. DOI

Buades A. B.; Arderiu V. S.; Maxwell L.; Amoza M.; Choquesillo-Lazarte D.; Aliaga-Alcalde N.; Viñas C.; Teixidor F.; Ruiz E. Slow-spin relaxation of a low-spin S = 1/2 FeIII carborane complex. Chem. Commun. 2019, 55, 3825–3828. 10.1039/c9cc01123d. PubMed DOI

Bancroft G. M.Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists; McGraw-Hill: Maidenhead, UK, 1973.

Dann S. E.; Neumann K. U.; Marco J. F. Mössbauer characterisation of synthetic analogues of the helvite minerals Fe4M4[BeSiO4]6X2 (M = Fe, Mn, Zn; X = S, Se). Hyperfine Interact. 2018, 239, 28.10.1007/s10751-018-1498-y. DOI

Klingelhöfer G. Mössbauer in situ studies of the surface of mars. Hyperfine Interact. 2004, 158, 117–124. 10.1007/s10751-005-9019-1. DOI

Auerbach H.; Giammanco G. E.; Schünemann V. A.; Ostrowski D.; Carrano C. J. Mössbauer spectroscopic characterization of iron(III)–polysaccharide coordination complexes: photochemistry, biological, and photoresponsive materials implications. Inorg. Chem. 2017, 56, 11524–11531. 10.1021/acs.inorgchem.7b00686. PubMed DOI

Kuzmann E.; Homonnay Z.; Klencsár Z.; Szalay R. 57Fe Mössbauer spectroscopy as a tool for study of spin states and magnetic interactions in inorganic chemistry. Molecules 2021, 26, 1062.10.3390/molecules26041062. PubMed DOI PMC

Schünemann V.; Winkler H. Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys. 2000, 63, 263–353. 10.1088/0034-4885/63/3/202. DOI

Yoo S. J.; Angove H. C.; Papaefthymiou V.; Burgess B. K.; Münck E. Mössbauer study of the MoFe protein of nitrogenase from azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J. Am. Chem. Soc. 2000, 122, 4926–4936. 10.1021/ja000254k. DOI

Van Stappen C.; Decamps L.; Cutsail G. E. III; Bjornsson R.; Henthorn J. T.; Birrell J. A.; DeBeer S. The spectroscopy of nitrogenases. Chem. Rev. 2020, 120, 5005–5081. 10.1021/acs.chemrev.9b00650. PubMed DOI PMC

Pandelia M.-E.; Lanz N. D.; Booker S. J.; Krebs C. Mössbauer spectroscopy of Fe/S proteins. Biochim. Biophys. Acta Mol. Cell 2015, 1853, 1395–1405. 10.1016/j.bbamcr.2014.12.005. PubMed DOI

McWilliams S. F.; Brennan-Wydra E.; MacLeod K. C.; Holland P. L. Density functional calculations for prediction of 57Fe Mössbauer isomer shifts and quadrupole splittings in β-diketiminate complexes. ACS Omega 2017, 2, 2594–2606. 10.1021/acsomega.7b00595. PubMed DOI PMC

Neese F. Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 2002, 337, 181–192. 10.1016/s0020-1693(02)01031-9. DOI

Bjornsson R.; Neese F.; DeBeer S. Revisiting the Mössbauer isomer shifts of the FeMoco cluster of nitrogenase and the cofactor charge. Inorg. Chem. 2017, 56, 1470–1477. 10.1021/acs.inorgchem.6b02540. PubMed DOI

Young R. D.; Frauenfelder H.; Fenimore P. W. Mössbauer Effect in Proteins. Phys. Rev. Lett. 2011, 107, 158102.10.1103/physrevlett.107.158102. PubMed DOI

Kudinov A. R.; Zanello P.; Herber R. H.; Loginov D. A.; Vinogradov M. M.; Vologzhanina A. V.; Starikova Z. A.; Corsini M.; Giorgi G.; Nowik I. Ferracarborane benzene complexes [(η-9-L-7,8-C2B9H10)Fe(η-C6H6)]+ (L = SMe2, NMe3): synthesis, reactivity, electrochemistry, Mössbauer effect studies, and bonding. Organometallics 2010, 29, 2260–2271. 10.1021/om901085y. DOI

Kudinov A. R.; Herber R. H.; Zanello P.; Perekalin D. S.; Glukhov I. V.; Nowik I.; Corsini M.; Fedi S.; Laschi F. Synthesis, structure, electrochemistry, and mössbauer effect studies of the ferraphosphadicarbollides [(C5R5)Fe(PC2B8H10)] (R = H, Me). Eur. J. Inorg. Chem. 2007, 2007, 4190–4196. 10.1002/ejic.200700288. DOI

Herber R. H. Mössbauer spectroscopy of organometallic compounds: Fe(C2B9H11)2– and (π-C5H5)Fe(C2B9H11). Inorg. Chem. 1969, 8, 174–176. 10.1021/ic50071a046. DOI

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098–3100. 10.1103/physreva.38.3098. PubMed DOI

Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822–8824. 10.1103/physrevb.33.8822. PubMed DOI

Weigend F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. 10.1039/b515623h. PubMed DOI

Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 10.1039/b508541a. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16. Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.

Jensen K. P.; Roos B. O.; Ryde U. Performance of density functionals for first row transition metal systems. J. Chem. Phys. 2007, 126, 014103.10.1063/1.2406071. PubMed DOI

Neese F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. 10.1002/wcms.81. DOI

Sinnecker S.; Slep L. D.; Bill E.; Neese F. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra. Inorg. Chem. 2005, 44, 2245–2254. 10.1021/ic048609e. PubMed DOI

Sandala G. M.; Hopmann K. H.; Ghosh A.; Noodleman L. Calibration of DFT functionals for the prediction of 57Fe Mössbauer spectral parameters in iron–nitrosyl and iron–sulfur complexes: accurate geometries prove essential. J. Chem. Theory Comput. 2011, 7, 3232–3247. 10.1021/ct200187d. PubMed DOI PMC

Harris T. V.; Szilagyi R. K. Comparative assessment of the composition and charge state of nitrogenase FeMo-cofactor. Inorg. Chem. 2011, 50, 4811–4824. 10.1021/ic102446n. PubMed DOI PMC

Greenwood N. N.; Gibb T. C.. Mössbauer Spectroscopy; Chapman and Hall: London, 1971.

Fackler J. P., Jr.Modern Inorganic Chemistry; Long G. J., Ed.; Mössbauer Spectroscopy Applied to Inorganic Chemistry; Plenum Press: NY, 1984; Vol. 1.

Römelt M.; Ye S.; Neese F. Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: Meta-GGA and double-hybrid functionals. Inorg. Chem. 2009, 48, 784–785. 10.1021/ic801535v. PubMed DOI

Dufek P.; Blaha P.; Schwarz K. Determination of the nuclear quadrupole moment of 57Fe. Phys. Rev. Lett. 1995, 75, 3545–3548. 10.1103/physrevlett.75.3545. PubMed DOI

Maeda Y. Mössbauer studies on the iron-ligand binding in hemoproteins and their related compounds. J. Phys. Colloq. 1979, 40, C2-514–C2-522. 10.1051/jphyscol:19792180. DOI

Bednarska-Szczepaniak K.; Dziedzic-Kocurek K.; Przelazły E.; Stanek J.; Leśnikowski Z. J. Intramolecular rotations and electronic states of iron in the iron bis(dicarbollide) complex Fe[(C2B9H11)2] studied by a 57Fe nuclear probe and computational methods. Chem. Commun. 2022, 58, 391–394. 10.1039/d1cc05111c. PubMed DOI

Brant P.; Feltham R. D. X-ray photoelectron spectra of iron complexes: correlation of iron 2p satellite intensity with complex spin state. J. Electron Spectrosc. Relat. Phenom. 1983, 32, 205–221. 10.1016/0368-2048(83)85002-6. DOI

Kahlert J. U.; Rawal A.; Hook J. M.; Rendina L. M.; Choucair M. Carborane functionalization of the aromatic network in chemically-synthesized Graphene. Chem. Commun. 2014, 50, 11332–11334. 10.1039/c4cc04521a. PubMed DOI

Kramm U. I.; Ni L.; Wagner S. 57Fe Mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 2019, 31, 1805623.10.1002/adma.201805623. PubMed DOI

Bühl M.; Hnyk D.; Macháček J. Computational studies of structures and properties of metallaboranes. Part 3: protonated iron bis(dicarbollide), [3-Fe-(1,2-C2B9H11)2H]−. Inorg. Chem. 2007, 46, 1771–1777. 10.1021/ic062096p. PubMed DOI

Kemp J. D.; Pitzer K. S. Hindered rotation of the methyl groups in ethane. J. Chem. Phys. 1936, 4, 749.10.1063/1.1749784. DOI

Bursch M.; Mewes J.-M.; Hansen A.; Grimme S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. 2022, 134, e20220573510.1002/ange.202205735. PubMed DOI PMC

Hawthorne M. F.; Zink J. I.; Skelton J. M.; Bayer M. J.; Liu Ch.; Livshits E.; Baer R.; Neuhauser D. Electrical or Photocontrol of the Rotary Motion of a Metallacarborane. Science 2004, 303, 1849–1851. 10.1126/science.1093846. PubMed DOI

López R.; Rico J. F.; Ramírez G.; Ema I.; Zorrilla D.; Gadre S. R.; Gadre S. R. Topology of molecular electron density and electrostatic potential with DAMQT. Comput. Phys. Commun. 2017, 214, 207–215. 10.1016/j.cpc.2017.01.012. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...