Two Shared Icosahedral Metallacarboranes through Iron: A Joint Experimental and Theoretical Refinement of Mössbauer Spectrum in [Fe(1,2-C2B9H11)2]Cs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37091389
PubMed Central
PMC10116535
DOI
10.1021/acsomega.3c00422
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Mössbauer and X-ray photoelectron spectroscopies (XPS) are complemented with high-level quantum-chemical computations in the study of the geometric and electronic structure of the paramagnetic salt of the metallacarborane sandwich complex [Fe(1,2-C2B9H11)2]Cs = FeSanCs. Experimental 57Fe isomer shifts and quadrupole splitting parameters are compared with the theoretical prediction, with good agreement. The appearance of two sets of Cs(3d) doublets in the XPS spectrum, separated by 2 eV, indicates that Cs has two different chemical environments due to ease of the Cs(+) cation moving around the sandwich complex with low-energy barriers, as confirmed by quantum-chemical computations. Several minimum-energy geometries of the FeSanCs structure with the corresponding energies and Mössbauer parameters are discussed, in particular the atomic charges and spin population and the surroundings of the Fe atom in the complex. The Mössbauer spectra were taken at different temperatures showing the presence of a low-spin Fe atom with S = 1/2 and thus confirming a paramagnetic FeIII species.
Instituto de Química Física Rocasolano CSIC E 28006 Madrid Spain
Zobrazit více v PubMed
Adams R. D. Foreword. J. Organomet. Chem. 2001, 637–639, 1.10.1016/s0022-328x(01)00875-0. DOI
Haaland A. Molecular structure and bonding in the 3d metallocenes. Acc. Chem. Res. 1979, 12, 415–422. 10.1021/ar50143a006. DOI
Hnyk D.; Holub J.; Jelínek T.; Macháček J.; Londesborough M. G. S. Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collect. Czech. Chem. Commun. 2010, 75, 1115–1123. 10.1135/cccc2010073. DOI
Eyrilmez S. M.; Bernhardt E.; Dávalos J. Z.; Lepšík M.; Hobza P.; Assaf K. I.; Nau W.; Holub J.; Oliva-Enrich J. M.; Fanfrlík J.; Hnyk D. Binary twinned-icosahedral [B21H18]− interacts with cyclodextrins as a precedent for its complexation with other organic motifs. Phys. Chem. Chem. Phys. 2017, 19, 11748–11752. 10.1039/c7cp01074e. PubMed DOI
Assaf K.; Holub J.; Bernhardt E.; Oliva-Enrich J. M.; Fernández Pérez M. I.; Canle M.; Santaballa J. A.; Fanfrlík J.; Hnyk D.; Nau W. Face-fusion of icosahedral boron hydride increases affinity to γ-cyclodextrin: closo,closo-[B21H18]− as an anion with very low free energy of dehydration. ChemPhysChem 2020, 21, 971–976. 10.1002/cphc.201901225. PubMed DOI PMC
Dobrott R. D.; Friedman L. B.; Lipscomb W. N. Molecular and crystal structure of B20H16. J. Chem. Phys. 1964, 40, 866–872. 10.1063/1.1725218. DOI
Schleyer P. v. R.; Maerker Ch.; Dransfeld A.; Jiao H.; van Eikema Hommes N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. 10.1021/ja960582d. PubMed DOI
Holub J.; Melichar P.; Růžičková Z.; Vrána J.; Wann D. A.; Fanfrlík J.; Hnyk D.; Růžička A. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing. Dalton Trans. 2017, 46, 13714–13719. 10.1039/c7dt02845h. PubMed DOI
Hawthorne M. F.; Young D. C.; Wegner P. A. Carbametallic Boron Hydride Derivatives. I. Apparent analogs of ferrocene and ferricinium ion. J. Am. Chem. Soc. 1965, 87, 1818–1819. 10.1021/ja01086a053. DOI
Hawthorne M. F.; Andrews T. D. Carborane analogues of cobalticinium ion. Chem. Commun. 1965, 443–444. 10.1039/c19650000443. DOI
Werner H. At least 60 years of ferrocene: the discovery and rediscovery of the sandwich complexes. Angew. Chem., Int. Ed. 2012, 51, 6052–6058. 10.1002/anie.201201598. PubMed DOI
Malaspina D. C.; Vinas C.; Teixidor F.; Faraudo J. Atomistic simulations of COSAN: amphiphiles without a head-and-tail design display ″head and tail″ surfactant behavior. Angew. Chem., Int. Ed. 2020, 59, 3088–3092. 10.1002/anie.201913257. PubMed DOI
Poater J.; Viñas C.; Bennour I.; Escayola S.; Solà M.; Teixidor F. Too Persistent to give up: aromaticity in boron clusters survives radical structural changes. J. Am. Chem. Soc. 2020, 142, 9396–9407. 10.1021/jacs.0c02228. PubMed DOI
Xavier J. A. M.; Viñas C.; Lorenzo E.; García-Mendiola T.; Teixidor F. Potential application of metallacarboranes as an internal reference: an electrochemical comparative study to ferrocene. Chem. Commun. 2022, 58, 4196–4199. 10.1039/d2cc00424k. PubMed DOI
Olejniczak A. B.; Mucha P.; Grüner B.; Lesnikowski Z. J. DNA-dinucleotides bearing a 3′,3′-cobalt- or 3′,3′-iron-1,2,1′,2′-dicarbollide complex. Organometallics 2007, 26, 3272–3274. 10.1021/om070102z. DOI
Wojtczak B. J.; Andrysiak A.; Grüner B.; Lesnikowski Z. J. Chemical ligation”: a versatile method for nucleoside modification with boron clusters. Chem.—Eur. J. 2008, 14, 10675–10682. 10.1002/chem.200801053. PubMed DOI
Lesnikowski Z. J. Boron units as pharmacophores - new applications and opportunities of boron cluster chemistry. Collect. Czech. Chem. Commun. 2007, 72, 1646–1658. 10.1135/cccc20071646. DOI
García-Mendiola T.; Bayon-Pizarro V.; Zaulet A.; Fuentes I.; Pariente F.; Teixidor F.; Viñas C.; Lorenzo E. Metallacarboranes as tunable redox potential electrochemical indicators for screening of gene mutation. Chem. Sci. 2016, 7, 5786–5797. 10.1039/c6sc01567k. PubMed DOI PMC
Kodr D.; Yenice C. P.; Simonova A.; Saftić D. P.; Pohl R.; Sýkorová V.; Ortiz M.; Havran L.; Fojta M.; Lesnikowski Z. J.; O’Sullivan C. K.; et al. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. J. Am. Chem. Soc. 2021, 143, 7124–7134. 10.1021/jacs.1c02222. PubMed DOI
Buades A. B.; Pereira L. C. J.; Vieira B. J. C.; Cerdeira A. C.; Waerenborgh J. C.; Pinheiro T.; Matos A. P. A.; Pinto C. G.; Guerreiro J. F.; Mendes F.; Valic S.; Teixidor F.; Viñas C.; Marques F. The Mössbauer effect using 57Fe-ferrabisdicarbollide ([o-57FeSan]−): a glance into the potential of a low-dose approach for glioblastoma radiotherapy. Inorg. Chem. Front. 2022, 9, 1490–1503. 10.1039/d1qi01513c. DOI
Bennour I.; Ramos M. N.; Nuez-Martínez M.; Xavier J. A. M.; Buades A. B.; Sillanpää R.; Teixidor F.; Choquesillo-Lazarte D.; Romero I.; Martínez-Medina M.; Viñas C. Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. 10.1039/d2dt01015a. PubMed DOI
Srb P.; Svoboda M.; Benda L.; Lepšík M.; Tarábek J.; Šícha V.; Grüner B.; Grantz-Šašková K.; Brynda J.; Řezáčová P.; Konvalinka J.; Veverka V. Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 5661–5673. 10.1039/c9cp00416e. PubMed DOI
Sivaev I. B.; Bregadze V. I.; Kuznetsov N. T. Derivatives of the closo-dodecaborate anion and their application in medicine. Russ. Chem. Bull. 2002, 51, 1362–1374. 10.1023/a:1020942418765. DOI
Pennanen T. O.; Macháček J.; Taubert S.; Vaara J.; Hnyk D. Ferrocene-like iron bis(dicarbollide), [3-FeIII-(1,2-C2B9H11)2]−. The first experimental and theoretical refinement of a paramagnetic 11B NMR spectrum. Phys. Chem. Chem. Phys. 2010, 12, 7018–7025. 10.1039/b923891c. PubMed DOI
Bühl M.; Holub J.; Hnyk D.; Macháček J. Computational studies of structures and properties of metallaboranes. 2. Transition-metal dicarbollide complexes. Organometallics 2006, 25, 2173–2181. 10.1021/om051025f. DOI
Buades A. B.; Arderiu V. S.; Maxwell L.; Amoza M.; Choquesillo-Lazarte D.; Aliaga-Alcalde N.; Viñas C.; Teixidor F.; Ruiz E. Slow-spin relaxation of a low-spin S = 1/2 FeIII carborane complex. Chem. Commun. 2019, 55, 3825–3828. 10.1039/c9cc01123d. PubMed DOI
Bancroft G. M.Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists; McGraw-Hill: Maidenhead, UK, 1973.
Dann S. E.; Neumann K. U.; Marco J. F. Mössbauer characterisation of synthetic analogues of the helvite minerals Fe4M4[BeSiO4]6X2 (M = Fe, Mn, Zn; X = S, Se). Hyperfine Interact. 2018, 239, 28.10.1007/s10751-018-1498-y. DOI
Klingelhöfer G. Mössbauer in situ studies of the surface of mars. Hyperfine Interact. 2004, 158, 117–124. 10.1007/s10751-005-9019-1. DOI
Auerbach H.; Giammanco G. E.; Schünemann V. A.; Ostrowski D.; Carrano C. J. Mössbauer spectroscopic characterization of iron(III)–polysaccharide coordination complexes: photochemistry, biological, and photoresponsive materials implications. Inorg. Chem. 2017, 56, 11524–11531. 10.1021/acs.inorgchem.7b00686. PubMed DOI
Kuzmann E.; Homonnay Z.; Klencsár Z.; Szalay R. 57Fe Mössbauer spectroscopy as a tool for study of spin states and magnetic interactions in inorganic chemistry. Molecules 2021, 26, 1062.10.3390/molecules26041062. PubMed DOI PMC
Schünemann V.; Winkler H. Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys. 2000, 63, 263–353. 10.1088/0034-4885/63/3/202. DOI
Yoo S. J.; Angove H. C.; Papaefthymiou V.; Burgess B. K.; Münck E. Mössbauer study of the MoFe protein of nitrogenase from azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J. Am. Chem. Soc. 2000, 122, 4926–4936. 10.1021/ja000254k. DOI
Van Stappen C.; Decamps L.; Cutsail G. E. III; Bjornsson R.; Henthorn J. T.; Birrell J. A.; DeBeer S. The spectroscopy of nitrogenases. Chem. Rev. 2020, 120, 5005–5081. 10.1021/acs.chemrev.9b00650. PubMed DOI PMC
Pandelia M.-E.; Lanz N. D.; Booker S. J.; Krebs C. Mössbauer spectroscopy of Fe/S proteins. Biochim. Biophys. Acta Mol. Cell 2015, 1853, 1395–1405. 10.1016/j.bbamcr.2014.12.005. PubMed DOI
McWilliams S. F.; Brennan-Wydra E.; MacLeod K. C.; Holland P. L. Density functional calculations for prediction of 57Fe Mössbauer isomer shifts and quadrupole splittings in β-diketiminate complexes. ACS Omega 2017, 2, 2594–2606. 10.1021/acsomega.7b00595. PubMed DOI PMC
Neese F. Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 2002, 337, 181–192. 10.1016/s0020-1693(02)01031-9. DOI
Bjornsson R.; Neese F.; DeBeer S. Revisiting the Mössbauer isomer shifts of the FeMoco cluster of nitrogenase and the cofactor charge. Inorg. Chem. 2017, 56, 1470–1477. 10.1021/acs.inorgchem.6b02540. PubMed DOI
Young R. D.; Frauenfelder H.; Fenimore P. W. Mössbauer Effect in Proteins. Phys. Rev. Lett. 2011, 107, 158102.10.1103/physrevlett.107.158102. PubMed DOI
Kudinov A. R.; Zanello P.; Herber R. H.; Loginov D. A.; Vinogradov M. M.; Vologzhanina A. V.; Starikova Z. A.; Corsini M.; Giorgi G.; Nowik I. Ferracarborane benzene complexes [(η-9-L-7,8-C2B9H10)Fe(η-C6H6)]+ (L = SMe2, NMe3): synthesis, reactivity, electrochemistry, Mössbauer effect studies, and bonding. Organometallics 2010, 29, 2260–2271. 10.1021/om901085y. DOI
Kudinov A. R.; Herber R. H.; Zanello P.; Perekalin D. S.; Glukhov I. V.; Nowik I.; Corsini M.; Fedi S.; Laschi F. Synthesis, structure, electrochemistry, and mössbauer effect studies of the ferraphosphadicarbollides [(C5R5)Fe(PC2B8H10)] (R = H, Me). Eur. J. Inorg. Chem. 2007, 2007, 4190–4196. 10.1002/ejic.200700288. DOI
Herber R. H. Mössbauer spectroscopy of organometallic compounds: Fe(C2B9H11)2– and (π-C5H5)Fe(C2B9H11). Inorg. Chem. 1969, 8, 174–176. 10.1021/ic50071a046. DOI
Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098–3100. 10.1103/physreva.38.3098. PubMed DOI
Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822–8824. 10.1103/physrevb.33.8822. PubMed DOI
Weigend F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. 10.1039/b515623h. PubMed DOI
Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 10.1039/b508541a. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16. Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.
Jensen K. P.; Roos B. O.; Ryde U. Performance of density functionals for first row transition metal systems. J. Chem. Phys. 2007, 126, 014103.10.1063/1.2406071. PubMed DOI
Neese F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. 10.1002/wcms.81. DOI
Sinnecker S.; Slep L. D.; Bill E.; Neese F. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra. Inorg. Chem. 2005, 44, 2245–2254. 10.1021/ic048609e. PubMed DOI
Sandala G. M.; Hopmann K. H.; Ghosh A.; Noodleman L. Calibration of DFT functionals for the prediction of 57Fe Mössbauer spectral parameters in iron–nitrosyl and iron–sulfur complexes: accurate geometries prove essential. J. Chem. Theory Comput. 2011, 7, 3232–3247. 10.1021/ct200187d. PubMed DOI PMC
Harris T. V.; Szilagyi R. K. Comparative assessment of the composition and charge state of nitrogenase FeMo-cofactor. Inorg. Chem. 2011, 50, 4811–4824. 10.1021/ic102446n. PubMed DOI PMC
Greenwood N. N.; Gibb T. C.. Mössbauer Spectroscopy; Chapman and Hall: London, 1971.
Fackler J. P., Jr.Modern Inorganic Chemistry; Long G. J., Ed.; Mössbauer Spectroscopy Applied to Inorganic Chemistry; Plenum Press: NY, 1984; Vol. 1.
Römelt M.; Ye S.; Neese F. Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: Meta-GGA and double-hybrid functionals. Inorg. Chem. 2009, 48, 784–785. 10.1021/ic801535v. PubMed DOI
Dufek P.; Blaha P.; Schwarz K. Determination of the nuclear quadrupole moment of 57Fe. Phys. Rev. Lett. 1995, 75, 3545–3548. 10.1103/physrevlett.75.3545. PubMed DOI
Maeda Y. Mössbauer studies on the iron-ligand binding in hemoproteins and their related compounds. J. Phys. Colloq. 1979, 40, C2-514–C2-522. 10.1051/jphyscol:19792180. DOI
Bednarska-Szczepaniak K.; Dziedzic-Kocurek K.; Przelazły E.; Stanek J.; Leśnikowski Z. J. Intramolecular rotations and electronic states of iron in the iron bis(dicarbollide) complex Fe[(C2B9H11)2] studied by a 57Fe nuclear probe and computational methods. Chem. Commun. 2022, 58, 391–394. 10.1039/d1cc05111c. PubMed DOI
Brant P.; Feltham R. D. X-ray photoelectron spectra of iron complexes: correlation of iron 2p satellite intensity with complex spin state. J. Electron Spectrosc. Relat. Phenom. 1983, 32, 205–221. 10.1016/0368-2048(83)85002-6. DOI
Kahlert J. U.; Rawal A.; Hook J. M.; Rendina L. M.; Choucair M. Carborane functionalization of the aromatic network in chemically-synthesized Graphene. Chem. Commun. 2014, 50, 11332–11334. 10.1039/c4cc04521a. PubMed DOI
Kramm U. I.; Ni L.; Wagner S. 57Fe Mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 2019, 31, 1805623.10.1002/adma.201805623. PubMed DOI
Bühl M.; Hnyk D.; Macháček J. Computational studies of structures and properties of metallaboranes. Part 3: protonated iron bis(dicarbollide), [3-Fe-(1,2-C2B9H11)2H]−. Inorg. Chem. 2007, 46, 1771–1777. 10.1021/ic062096p. PubMed DOI
Kemp J. D.; Pitzer K. S. Hindered rotation of the methyl groups in ethane. J. Chem. Phys. 1936, 4, 749.10.1063/1.1749784. DOI
Bursch M.; Mewes J.-M.; Hansen A.; Grimme S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. 2022, 134, e20220573510.1002/ange.202205735. PubMed DOI PMC
Hawthorne M. F.; Zink J. I.; Skelton J. M.; Bayer M. J.; Liu Ch.; Livshits E.; Baer R.; Neuhauser D. Electrical or Photocontrol of the Rotary Motion of a Metallacarborane. Science 2004, 303, 1849–1851. 10.1126/science.1093846. PubMed DOI
López R.; Rico J. F.; Ramírez G.; Ema I.; Zorrilla D.; Gadre S. R.; Gadre S. R. Topology of molecular electron density and electrostatic potential with DAMQT. Comput. Phys. Commun. 2017, 214, 207–215. 10.1016/j.cpc.2017.01.012. DOI