Face-Fusion of Icosahedral Boron Hydride Increases Affinity to γ-Cyclodextrin: closo,closo-[B21 H18 ]- as an Anion with Very Low Free Energy of Dehydration

. 2020 May 18 ; 21 (10) : 971-976. [epub] 20200407

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32163219

Grantová podpora
-GPC- ED431B 2017/59 Xunta de Galicia - International
CTQ2018-094644-B-C22 Spanish MICINN - International

The supramolecular recognition of closo,closo-[B21 H18 ]- by cyclodextrins (CDs) has been studied in aqueous solution by isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. These solution studies follow up on previous mass-spectrometric measurements and computations, which indicated the formation and stability of CD ⋅ B21 H18- complexes in the gas phase. The thermodynamic signature of solution-phase binding is exceptional, the association constant for the γ-CD complex with B21 H18- reaches 1.8×106 M-1 , which is on the same order of magnitude as the so far highest observed value for the complex between γ-CD and a metallacarborane. The nature of the intermolecular interaction is also examined by quantum-mechanical computational protocols. These suggest that the desolvation penalty, which is particularly low for the B21 H18- anion, is the decisive factor for its high binding strength. The results further suggest that the elliptical macropolyhedral boron hydride is another example of a CD binder, whose extraordinary binding affinity is driven by the chaotropic effect, which describes the intrinsic affinity of large polarizable and weakly solvated chaotropic anions to hydrophobic cavities and surfaces in aqueous solution.

Zobrazit více v PubMed

Bernhardt E., Brauer D. J., Finze M., Willner H., Angew. Chem. Int. Ed. 2007, 46, 2927–2930; PubMed

Angew. Chem. 2007, 119, 2985–2988.

Bühl M., Hnyk D., Macháček J., Chem. Eur. J. 2005, 11, 4109–4120. PubMed

Schlüter F., Bernhardt E., Z. Anorg. Allg. Chem. 2012, 638, 594–601.

Li S., Purdy W. C., Chem. Rev. 1992, 92, 1457–1470.

Rekharsky M. V., Inoue Y., Chem. Rev. 1998, 98, 1875–1918. PubMed

Del Valle E. M. M., Process Biochem. 2004, 39, 1033–1046.

Eyrilmez S. M., Bernhardt E., Dávalos J. Z., Lepšík M., Hobza P., Assaf K. I., Nau W. M., Holub J., Oliva-Enrich J. M., Fanfrlík J., Hnyk D., Phys. Chem. Chem. Phys. 2017, 19, 11748–11752. PubMed

Goszczyński T. M., Fink K., Boratyński J., Expert Opin. Biol. Ther. 2018, 18, 205–213. PubMed

Goszczyński T. M., Fink K., Kowalski K., Leśnikowski Z. J., Boratyński J., Sci. Rep. 2017, 7, 9800. PubMed PMC

Assaf K. I., Begaj B., Frank A., Nilam M., Mougharbel A. S., Kortz U., Nekvinda J., Grüner B., Gabel D., Nau W. M., J. Org. Chem. 2019, 84, 11790–11798. The computed dipole moments of the corresponding transoid stereoisomers of both COSANs are 0 D, which intrinsically arises from their symmetries. Therefore, cartesian coordinates are justified for computing the dipole moments of the COSANs in their cisoid arrangements to produce values of 6.1 D and 2.4 D for ortho- and meta-COSAN, respectively. PubMed

Assaf K. I., Ural M. S., Pan F., Georgiev T., Simova S., Rissanen K., Gabel D., Nau W. M., Angew. Chem. Int. Ed. 2015, 54, 6852–6856; PubMed PMC

Angew. Chem. 2015, 127, 6956–6960.

Wu Y., Shi R., Wu Y.-L., Holcroft J. M., Liu Z., Frasconi M., Wasielewski M. R., Li H., Stoddart J. F., J. Am. Chem. Soc. 2015, 137, 4111–4118. PubMed

Ivanov A. A., Falaise C., Abramov P. A., Shestopalov M. A., Kirakci K., Lang K., Moussawi M. A., Sokolov M. N., Naumov N. G., Floquet S., Landy D., Haouas M., Brylev K. A., Mironov Y. V., Molard Y., Cordier S., Cadot E., Chem. Eur. J. 2018, 24, 13467–13478. PubMed

Falaise C., Moussawi M. A., Floquet S., Abramov P. A., Sokolov M. N., Haouas M., Cadot E., J. Am. Chem. Soc. 2018, 140, 11198–11201. PubMed

Moussawi M. A., Leclerc-Laronze N., Floquet S., Abramov P. A., Sokolov M. N., Cordier S., Ponchel A., Monflier E., Bricout H., Landy D., Haouas M., Marrot J., Cadot E., J. Am. Chem. Soc. 2017, 139, 12793–12803. PubMed

Moussawi M. A., Haouas M., Floquet S., Shepard W. E., Abramov P. A., Sokolov M. N., Fedin V. P., Cordier S., Ponchel A., Monflier E., Marrot J., Cadot E., J. Am. Chem. Soc. 2017, 139, 14376–14379. PubMed

Ivanov A. A., Falaise C., Landy D., Haouas M., Mironov Y. V., Shestopalov M. A., Cadot E., Chem. Commun. 2019, 55, 9951–9954. PubMed

Buchecker T., Schmid P., Renaudineau S., Diat O., Proust A., Pfitzner A., Bauduin P., Chem. Commun. 2018, 54, 1833–1836. PubMed

Assaf K. I., Nau W. M., Angew. Chem. Int. Ed. 2018, 57, 13968–13981. PubMed PMC

Assaf K. I., Gabel D., Zimmermann W., Nau W. M., Org. Biomol. Chem. 2016, 14, 7702–7706. PubMed

11B NMR spectroscopy is generally the method of choice in boron cluster chemistry, see, e. g., D. Hnyk, D. A. Wann, Molecular Structure of Free Boron Clusters. In Boron: The Fifth Element; D. Hnyk, M. McKee, Eds.; Springer International Publishing: Cham, 2015; pp 17–48.

Malaspina D. C., Viñas C., Teixidor F., Faraudo J., Angew. Chem. Int. Ed. 2020, 59, 3088–3092. PubMed

Bauduin P., Prevost S., Farràs P., Teixidor F., Diat O., Zemb T., Angew. Chem. Int. Ed. 2011, 50, 5298–5300; PubMed

Angew. Chem. 2011, 123, 5410–5412.

Ďorďovič V., Tošner Z., Uchman M., Zhigunov A., Reza M., Ruokolainen J., Pramanik G., Cígler P., Kalíková K., Gradzielski M., Matějíček P., Langmuir 2016, 32, 6713–6722. PubMed

Nekvinda J., Grüner B., Gabel D., Nau W. M., Assaf K. I., Chem. Eur. J. 2018, 24, 12970–12975. PubMed

Wang W., Wang X., Xiang C., Zhou X., Gabel D., Nau W. M., Assaf K. I., Zhang H., ChemNanoMat 2019, 5, 124–129.

Lepšík M., Řezáč J., Kolář M., Pecina A., Hobza P., Fanfrlík J., ChemPlusChem 2013, 78, 921–931. PubMed

Biedermann F., Nau W. M., Schneider H.-J., Angew. Chem. Int. Ed. 2014, 53, 11158–11171; PubMed

Angew. Chem. 2014, 126, 11338–11352.

Karki K., Gabel D., Roccatano D., Inorg. Chem. 2012, 51, 4894–4896. PubMed

The largest ΔG′c°nf values were found for B12I12 2− and B12H12 2− (3.0 and 2.6 kcal mol−1), which may indicate that these two [largest and smallest] guests require a slight expansion or contraction of the γ-CD cavity to facilitate binding (see also Figure 4).

Fanfrlík J., Lepšík M., Horinek D., Havlas Z., Hobza P., ChemPhysChem 2006, 7, 1100–1105. PubMed

Farràs P., Juárez-Pérez E. J., Lepšík M., Luque R., Núñez R., Teixidor F., Chem. Soc. Rev. 2012, 41, 3445–3463. PubMed

Wang W., Wang X., Cao J., Liu J., Qi B., Zhou X., Zhang S., Gabel D., Nau W. M., Assaf K. I., Zhang H., Chem. Commun. 2018, 54, 2098–2101. PubMed

Uchman M., Abrikosov A. I., Lepšík M., Lund M., Matějíček P., Adv. Theor. Simul. 2018, 1, 1700002.

Matějíček P., Curr. Opin. Colloid Interface Sci. 2020, 45, 97–107.

He S., Biedermann F., Vankova N., Zhechkov L., Heine T., Hoffman R. E., De Simone A., Duignan T. T., Nau W. M., Nat. Chem. 2018, 10, 1252–1257. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...