Face-Fusion of Icosahedral Boron Hydride Increases Affinity to γ-Cyclodextrin: closo,closo-[B21 H18 ]- as an Anion with Very Low Free Energy of Dehydration
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
-GPC- ED431B 2017/59
Xunta de Galicia - International
CTQ2018-094644-B-C22
Spanish MICINN - International
PubMed
32163219
PubMed Central
PMC7318346
DOI
10.1002/cphc.201901225
Knihovny.cz E-zdroje
- Klíčová slova
- anion binding, boron clusters, desolvation, host-guest chemistry, intermolecular interactions,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The supramolecular recognition of closo,closo-[B21 H18 ]- by cyclodextrins (CDs) has been studied in aqueous solution by isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. These solution studies follow up on previous mass-spectrometric measurements and computations, which indicated the formation and stability of CD ⋅ B21 H18- complexes in the gas phase. The thermodynamic signature of solution-phase binding is exceptional, the association constant for the γ-CD complex with B21 H18- reaches 1.8×106 M-1 , which is on the same order of magnitude as the so far highest observed value for the complex between γ-CD and a metallacarborane. The nature of the intermolecular interaction is also examined by quantum-mechanical computational protocols. These suggest that the desolvation penalty, which is particularly low for the B21 H18- anion, is the decisive factor for its high binding strength. The results further suggest that the elliptical macropolyhedral boron hydride is another example of a CD binder, whose extraordinary binding affinity is driven by the chaotropic effect, which describes the intrinsic affinity of large polarizable and weakly solvated chaotropic anions to hydrophobic cavities and surfaces in aqueous solution.
Bergische University Wuppertal Gaussstrasse 20 42097 Wuppertal Germany
Department of Chemistry Al Balqa Applied University 19117 Al Salt Jordan
Institute of Inorganic Chemistry of the Czech Academy of Sciences 25068 Husinec Řež Czech Republic
Instituto de Química Física Rocasolano CSIC ESP 28006 Madrid Spain
Zobrazit více v PubMed
Bernhardt E., Brauer D. J., Finze M., Willner H., Angew. Chem. Int. Ed. 2007, 46, 2927–2930; PubMed
Angew. Chem. 2007, 119, 2985–2988.
Bühl M., Hnyk D., Macháček J., Chem. Eur. J. 2005, 11, 4109–4120. PubMed
Schlüter F., Bernhardt E., Z. Anorg. Allg. Chem. 2012, 638, 594–601.
Li S., Purdy W. C., Chem. Rev. 1992, 92, 1457–1470.
Rekharsky M. V., Inoue Y., Chem. Rev. 1998, 98, 1875–1918. PubMed
Del Valle E. M. M., Process Biochem. 2004, 39, 1033–1046.
Eyrilmez S. M., Bernhardt E., Dávalos J. Z., Lepšík M., Hobza P., Assaf K. I., Nau W. M., Holub J., Oliva-Enrich J. M., Fanfrlík J., Hnyk D., Phys. Chem. Chem. Phys. 2017, 19, 11748–11752. PubMed
Goszczyński T. M., Fink K., Boratyński J., Expert Opin. Biol. Ther. 2018, 18, 205–213. PubMed
Goszczyński T. M., Fink K., Kowalski K., Leśnikowski Z. J., Boratyński J., Sci. Rep. 2017, 7, 9800. PubMed PMC
Assaf K. I., Begaj B., Frank A., Nilam M., Mougharbel A. S., Kortz U., Nekvinda J., Grüner B., Gabel D., Nau W. M., J. Org. Chem. 2019, 84, 11790–11798. The computed dipole moments of the corresponding transoid stereoisomers of both COSANs are 0 D, which intrinsically arises from their symmetries. Therefore, cartesian coordinates are justified for computing the dipole moments of the COSANs in their cisoid arrangements to produce values of 6.1 D and 2.4 D for ortho- and meta-COSAN, respectively. PubMed
Assaf K. I., Ural M. S., Pan F., Georgiev T., Simova S., Rissanen K., Gabel D., Nau W. M., Angew. Chem. Int. Ed. 2015, 54, 6852–6856; PubMed PMC
Angew. Chem. 2015, 127, 6956–6960.
Wu Y., Shi R., Wu Y.-L., Holcroft J. M., Liu Z., Frasconi M., Wasielewski M. R., Li H., Stoddart J. F., J. Am. Chem. Soc. 2015, 137, 4111–4118. PubMed
Ivanov A. A., Falaise C., Abramov P. A., Shestopalov M. A., Kirakci K., Lang K., Moussawi M. A., Sokolov M. N., Naumov N. G., Floquet S., Landy D., Haouas M., Brylev K. A., Mironov Y. V., Molard Y., Cordier S., Cadot E., Chem. Eur. J. 2018, 24, 13467–13478. PubMed
Falaise C., Moussawi M. A., Floquet S., Abramov P. A., Sokolov M. N., Haouas M., Cadot E., J. Am. Chem. Soc. 2018, 140, 11198–11201. PubMed
Moussawi M. A., Leclerc-Laronze N., Floquet S., Abramov P. A., Sokolov M. N., Cordier S., Ponchel A., Monflier E., Bricout H., Landy D., Haouas M., Marrot J., Cadot E., J. Am. Chem. Soc. 2017, 139, 12793–12803. PubMed
Moussawi M. A., Haouas M., Floquet S., Shepard W. E., Abramov P. A., Sokolov M. N., Fedin V. P., Cordier S., Ponchel A., Monflier E., Marrot J., Cadot E., J. Am. Chem. Soc. 2017, 139, 14376–14379. PubMed
Ivanov A. A., Falaise C., Landy D., Haouas M., Mironov Y. V., Shestopalov M. A., Cadot E., Chem. Commun. 2019, 55, 9951–9954. PubMed
Buchecker T., Schmid P., Renaudineau S., Diat O., Proust A., Pfitzner A., Bauduin P., Chem. Commun. 2018, 54, 1833–1836. PubMed
Assaf K. I., Nau W. M., Angew. Chem. Int. Ed. 2018, 57, 13968–13981. PubMed PMC
Assaf K. I., Gabel D., Zimmermann W., Nau W. M., Org. Biomol. Chem. 2016, 14, 7702–7706. PubMed
11B NMR spectroscopy is generally the method of choice in boron cluster chemistry, see, e. g., D. Hnyk, D. A. Wann, Molecular Structure of Free Boron Clusters. In Boron: The Fifth Element; D. Hnyk, M. McKee, Eds.; Springer International Publishing: Cham, 2015; pp 17–48.
Malaspina D. C., Viñas C., Teixidor F., Faraudo J., Angew. Chem. Int. Ed. 2020, 59, 3088–3092. PubMed
Bauduin P., Prevost S., Farràs P., Teixidor F., Diat O., Zemb T., Angew. Chem. Int. Ed. 2011, 50, 5298–5300; PubMed
Angew. Chem. 2011, 123, 5410–5412.
Ďorďovič V., Tošner Z., Uchman M., Zhigunov A., Reza M., Ruokolainen J., Pramanik G., Cígler P., Kalíková K., Gradzielski M., Matějíček P., Langmuir 2016, 32, 6713–6722. PubMed
Nekvinda J., Grüner B., Gabel D., Nau W. M., Assaf K. I., Chem. Eur. J. 2018, 24, 12970–12975. PubMed
Wang W., Wang X., Xiang C., Zhou X., Gabel D., Nau W. M., Assaf K. I., Zhang H., ChemNanoMat 2019, 5, 124–129.
Lepšík M., Řezáč J., Kolář M., Pecina A., Hobza P., Fanfrlík J., ChemPlusChem 2013, 78, 921–931. PubMed
Biedermann F., Nau W. M., Schneider H.-J., Angew. Chem. Int. Ed. 2014, 53, 11158–11171; PubMed
Angew. Chem. 2014, 126, 11338–11352.
Karki K., Gabel D., Roccatano D., Inorg. Chem. 2012, 51, 4894–4896. PubMed
The largest ΔG′c°nf values were found for B12I12 2− and B12H12 2− (3.0 and 2.6 kcal mol−1), which may indicate that these two [largest and smallest] guests require a slight expansion or contraction of the γ-CD cavity to facilitate binding (see also Figure 4).
Fanfrlík J., Lepšík M., Horinek D., Havlas Z., Hobza P., ChemPhysChem 2006, 7, 1100–1105. PubMed
Farràs P., Juárez-Pérez E. J., Lepšík M., Luque R., Núñez R., Teixidor F., Chem. Soc. Rev. 2012, 41, 3445–3463. PubMed
Wang W., Wang X., Cao J., Liu J., Qi B., Zhou X., Zhang S., Gabel D., Nau W. M., Assaf K. I., Zhang H., Chem. Commun. 2018, 54, 2098–2101. PubMed
Uchman M., Abrikosov A. I., Lepšík M., Lund M., Matějíček P., Adv. Theor. Simul. 2018, 1, 1700002.
Matějíček P., Curr. Opin. Colloid Interface Sci. 2020, 45, 97–107.
He S., Biedermann F., Vankova N., Zhechkov L., Heine T., Hoffman R. E., De Simone A., Duignan T. T., Nau W. M., Nat. Chem. 2018, 10, 1252–1257. PubMed