A genetic perspective on Longobard-Era migrations
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu historické články, časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30651584
PubMed Central
PMC6460631
DOI
10.1038/s41431-018-0319-8
PII: 10.1038/s41431-018-0319-8
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- dějiny středověku MeSH
- genom mitochondriální genetika MeSH
- haplotypy genetika MeSH
- hřbitovy MeSH
- lidé MeSH
- migrace lidstva dějiny MeSH
- mitochondriální DNA genetika MeSH
- starobylá DNA analýza MeSH
- Check Tag
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Česká republika MeSH
- Itálie MeSH
- Maďarsko MeSH
- Názvy látek
- mitochondriální DNA MeSH
- starobylá DNA MeSH
From the first century AD, Europe has been interested by population movements, commonly known as Barbarian migrations. Among these processes, the one involving the Longobard culture interested a vast region, but its dynamics and demographic impact remains largely unknown. Here we report 87 new complete mitochondrial sequences coming from nine early-medieval cemeteries located along the area interested by the Longobard migration (Czech Republic, Hungary and Italy). From the same areas, we sampled necropoleis characterized by cultural markers associated with the Longobard culture (LC) and coeval burials where no such markers were found, or with a chronology slightly preceding the presumed arrival of the Longobards in that region (NLC). Population genetics analysis and demographic modeling highlighted a similarity between LC individuals, as reflected by the sharing of quite rare haplogroups and by the degree of genetic resemblance between Hungarian and Italian LC necropoleis estimated via a Bayesian approach, ABC. The demographic model receiving the strongest statistical support also postulates a contact between LC and NLC communities, thus indicating a complex dynamics of admixture in medieval Europe.
Department of Ecology and Evolution Stony Brook University Stony Brook NY 11790 USA
Dipartimento di Biologia Università di Firenze 50122 Florence Italy
Dipartimento di Scienze della Vita e Biotecnologie Università di Ferrara 44121 Ferrara Italy
Fondazione Edmund Mach 38010 San Michele all'Adige Italy
Heinrich Schliemann Institut für Altertumswissenschaften Universität Rostock Rostock 18055 Germany
Institute of Archaeological Sciences Eötvös Loránd University Múzeum körút 4 B Budapest 1088 Hungary
Institute of Archaeology of the Czech Academy of Sciences Brno Czechia
Research Centre for the Humanities Hungarian Academy of Sciences Budapest Hungary
School of Historical Studies Institute for Advanced Study Princeton NJ 08540 USA
Soprintendenza Archeologia del Piemonte Avigliana 10051 Italy
Zobrazit více v PubMed
Bemmann J, Schmauder M, editors. Die Langobarden in den Schriftquellen bis zu den Markomannenkriegen. Proceedings of the Mitteleuropa Langobarden – Awaren – Slawen. p. 43–50; Frankfurt a.M., Bonn: Habelt, 2008.
Geary P. The myth of nations. The medieval origins of Europe. Princeton: Princeton University Press; 2002.
Koncz I. A historical date and its archaeological consequences. Acta Archaeol Acad Sci Hung 2015;66:315–40.
Giostra C. Goths and Lombards in Italy: the potential of archaeology with respect to ethnocultural identification. Eur J Post-Class Archaeol. 2011;1:7–36.
Vai S, Ghirotto S, Pilli E, et al. Genealogical relationships between early medieval and modern inhabitants of Piedmont. PLoS ONE. 2015;10:e0116801. doi: 10.1371/journal.pone.0116801. PubMed DOI PMC
Vai S, Lari M, Ghirotto S, Rizzi E, Achilli A, Olivieri A, et al. Diachronic and synchronic genetic analysis of ancient Piedmont population. J Biol Res. 2012;1:LXXXV.
Alt KW, Knipper C, Peters D, et al. Lombards on the move-an integrative study of the migration period cemetery at Szolad, Hungary. PLoS ONE. 2014;9:e110793. doi: 10.1371/journal.pone.0110793. PubMed DOI PMC
Pinhasi R, Fernandes D, Sirak K, et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE. 2015;10:e0129102. doi: 10.1371/journal.pone.0129102. PubMed DOI PMC
Dabney J, Knapp M, Glocke I, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci USA. 2013;110:15758–63. doi: 10.1073/pnas.1314445110. PubMed DOI PMC
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010:prot5448. doi: 10.1101/pdb.prot5448. PubMed DOI
Maricic T, Whitten M, Pääbo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE. 2010;5:e14004. doi: 10.1371/journal.pone.0014004. PubMed DOI PMC
Modi A, Tassi F, Susca RR, et al. Complete mitochondrial sequences from Mesolithic Sardinia. Sci Rep. 2017;7:42869. doi: 10.1038/srep42869. PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–4. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Fu Q, Mittnik A, Johnson Philip LF, et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr Biol. 2013;23:553–9. doi: 10.1016/j.cub.2013.02.044. PubMed DOI PMC
Kloss-Brandstatter A, Pacher D, Schonherr S, et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat. 2011;32:25–32. doi: 10.1002/humu.21382. PubMed DOI
van Oven M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Sci Int. 2015;5:e392–e394.
Bandelt HJ, Forster P, Sykes BC, Richards MB. Mitochondrial portraits of human populations using median networks. Genetics. 1995;141:743–53. PubMed PMC
Csakyova V, Szecsenyi-Nagy A, Csosz A, et al. Maternal genetic composition of a medieval population from a Hungarian-Slavic contact zone in Central Europe. PLoS ONE. 2016;11:e0151206. doi: 10.1371/journal.pone.0151206. PubMed DOI PMC
Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R package version. J Stat Softw. 2016;25:1–18.
R Develompment Core Team. R: a language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. http://www.R-project.org/; 2011.
Tassi F, Vai S, Ghirotto S, Lari M, Modi A, Pilli E, et al. Genome diversity in the Neolithic Globular Amphorae culture and the spread of Indo-European languages. Proc Biol Sci. 2017;284:20171540. PubMed PMC
Schiffels S, Haak W, Paajanen P, et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat Commun. 2016;7:10408. doi: 10.1038/ncomms10408. PubMed DOI PMC
Allentoft ME, Sikora M, Sjogren KG, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–72. doi: 10.1038/nature14507. PubMed DOI
Gunther T, Valdiosera C, Malmstrom H, et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc Natl Acad Sci USA. 2015;112:11917–22. doi: 10.1073/pnas.1509851112. PubMed DOI PMC
Haak W, Lazaridis I, Patterson N, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–11. doi: 10.1038/nature14317. PubMed DOI PMC
Lipson M, Szecsenyi-Nagy A, Mallick S, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551:368–72. doi: 10.1038/nature24476. PubMed DOI PMC
Martiniano R, Caffell A, Holst M, et al. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat Commun. 2016;7:10326. doi: 10.1038/ncomms10326. PubMed DOI PMC
Mathieson I, Lazaridis I, Rohland N, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC
Mittnik A, Wang CC, Pfrengle S, et al. The genetic prehistory of the Baltic Sea region. Nat Commun. 2018;9:442. doi: 10.1038/s41467-018-02825-9. PubMed DOI PMC
Neparaczki E, Kocsy K, Toth GE, et al. Revising mtDNA haplotypes of the ancient Hungarian conquerors with next generation sequencing. PLoS ONE. 2017;12:e0174886. doi: 10.1371/journal.pone.0174886. PubMed DOI PMC
Olalde I, Brace S, Allentoft ME, et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018;555:190–6. doi: 10.1038/nature25738. PubMed DOI PMC
Rusu I, Modi A, Vai S, et al. Maternal DNA lineages at the gate of Europe in the 10th century AD. PLoS ONE. 2018;13:e0193578. doi: 10.1371/journal.pone.0193578. PubMed DOI PMC
Batini C, Hallast P, Vagene AJ, et al. Population resequencing of European mitochondrial genomes highlights sex-bias in Bronze Age demographic expansions. Sci Rep. 2017;7:12086. doi: 10.1038/s41598-017-11307-9. PubMed DOI PMC
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC
Amorim CEG, Vai S, Posth C, Modi A, Koncz I, Hakenbeck S, et al. Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat Commun. 2018;9:3547. PubMed PMC
Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics. 2010;11:116. doi: 10.1186/1471-2105-11-116. PubMed DOI PMC
Pudlo P, Marin JM, Estoup A, Cornuet JM, Gautier M, Robert CP. Reliable ABC model choice via random forests. Bioinformatics. 2016;32:859–66. doi: 10.1093/bioinformatics/btv684. PubMed DOI
Breiman L. Random forests. Mach Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–35. PubMed PMC
Hamilton G, Stoneking M, Excoffier L. Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations. Proc Natl Acad Sci USA. 2005;102:7476–80. doi: 10.1073/pnas.0409253102. PubMed DOI PMC
Kivisild T. Maternal ancestry and population history from whole mitochondrial genomes. Investig Genet. 2015;6:3. doi: 10.1186/s13323-015-0022-2. PubMed DOI PMC
Hedman M, Brandstatter A, Pimenoff V, et al. Finnish mitochondrial DNA HVS-I and HVS-II population data. Forensic Sci Int. 2007;172:171–8. doi: 10.1016/j.forsciint.2006.09.012. PubMed DOI