Late Danubian mitochondrial genomes shed light into the Neolithisation of Central Europe in the 5th millennium BC
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28302068
PubMed Central
PMC5356262
DOI
10.1186/s12862-017-0924-0
PII: 10.1186/s12862-017-0924-0
Knihovny.cz E-zdroje
- Klíčová slova
- Ancient DNA, Danubian Neolithic, Mitochondrial DNA, Neolithic transition, U5 haplogroup,
- MeSH
- běloši genetika MeSH
- genom mitochondriální MeSH
- haplotypy MeSH
- lékařská genetika MeSH
- lidé MeSH
- migrace lidstva * MeSH
- mitochondriální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Polsko MeSH
- Názvy látek
- mitochondriální DNA MeSH
BACKGROUND: Recent aDNA studies are progressively focusing on various Neolithic and Hunter - Gatherer (HG) populations, providing arguments in favor of major migrations accompanying European Neolithisation. The major focus was so far on the Linear Pottery Culture (LBK), which introduced the Neolithic way of life in Central Europe in the second half of 6th millennium BC. It is widely agreed that people of this culture were genetically different from local HGs and no genetic exchange is seen between the two groups. From the other hand some degree of resurgence of HGs genetic component is seen in late Neolithic groups belonging to the complex of the Funnel Beaker Cultures (TRB). Less attention is brought to various middle Neolithic cultures belonging to Late Danubian sequence which chronologically fall in between those two abovementioned groups. We suspected that genetic influx from HG to farming communities might have happened in Late Danubian cultures since archaeologists see extensive contacts between those two communities. RESULTS: Here we address this issue by presenting 5 complete mitochondrial genomes of various late Danubian individuals from modern-day Poland and combining it with available published data. Our data show that Late Danubian cultures are maternally closely related to Funnel Beaker groups instead of culturally similar LBK. CONCLUSIONS: We assume that it is an effect of the presence of individuals belonging to U5 haplogroup both in Late Danubians and the TRB. The U5 haplogroup is thought to be a typical for HGs of Europe and therefore we argue that it is an additional evidence of genetic exchange between farming and HG groups taking place at least as far back as in middle Neolithic, in the Late Danubian communities.
Zobrazit více v PubMed
Jakucs J, Bánffy E, Oross K, Voicsek V, Bronk Ramsey C, Dunbar E, et al. Between the Vinča and Linearbandkeramik Worlds: The Diversity of Practices and Identities in the 54th–53rd Centuries cal BC in Southwest Hungary and Beyond. J World Prehist. 2016;29:267–336. doi: 10.1007/s10963-016-9096-x. PubMed DOI PMC
Gronenborn D. Proc.-Br. Acad. Oxford University Press INC. 2007. Beyond the models:Neolithisation’in Central Europe; p. 73.
Renfrew C, Boyle KV. Archaeogenetics: DNA and the population prehistory of Europe. Cambridge: McDonald Institute of Archeological Research; 2000.
Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–13. doi: 10.1038/nature13673. PubMed DOI PMC
Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V, et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun [Internet]. 2014;5. Available from: http://dx.doi.org/10.1038/ncomms6257. PubMed DOI PMC
Skoglund P, Malmström H, Omrak A, Raghavan M, Valdiosera C, Günther T, et al. Genomic diversity and admixture differs for stone-age Scandinavian foragers and farmers. Science. 2014;344:747. doi: 10.1126/science.1253448. PubMed DOI
Günther T, Jakobsson M. Genes mirror migrations and cultures in prehistoric Europe — a population genomic perspective. Genet Hum Orig. 2016;41:115–23. PubMed
Childe VG. The dawn of European civilization. London: Routledge & Kegan Paul; 1925.
Oross K, Bánffy E. Three successive waves of Neolithisation: LBK development in Transdanubia. Doc Praehist. 2009;36:175–89. doi: 10.4312/dp.36.11. DOI
Whittle AW. Europe in the Neolithic: the creation of new worlds. Cambridge: Cambridge University Press; 1996.
Zvelebil M. The social context of the agricultural transition in Europe. 2000. pp. 57–79.
Kruk J, Milisauskas S. Rozkwit i upadek spoleczeňstw rolniczych neolitu: The Rise and Fall of Neolithic Societies. Kraków: Instytut Archeologii i Etnologii Polskiej Akademii Nauk; 1999.
Marciniak A. Interactions between hunter-gatherers and farmers in the Early and Middle Neolithic in the Polish part of the North European Plain. In: Papagianni D, Leytoneds R, editors. Time Change Archaeol. Anthropol. Perspect. Long-Term Hunt.-Gatherer Soc. 2008. pp. 115–33.
Marciniak A. The society in the making: the house and the household in the Danubian Neolithic of the central European lowlands. In: Zimmerman A, Kerig T, editors. Econ. Archaeol. Struct. Perform. Eur. Archaeol. Bonn: Rudolf Habelt; 2013. pp. 47–63.
Czerniak L. Mitteleur. Im 5 Jahrtausend Vor Christ. Beitr. Zur Int. Konf. Münst. 2010. Münster: LIT Verlag; 2012. After the LBK. Communities of the 5th millennium BC in north-central Europe; pp. 151–74.
Terberger T, Hartz S, Kabacinski J. Neolit. Hist. Mattered Process. Neolit. North-West. Eur. 2009. Late hunter-gatherer and early farmer contacts in the southern Baltic–a discussion; pp. 257–97.
Jankowska D. Społeczności strefy południowo-zachodniobałtyckiej w dobie neolityzacji. Poznań: Wydawnictwo Naukowe UAM; 1990
Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tänzer M, et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science. 2005;310:1016–8. PubMed
Haak W, Balanovsky O, Sanchez JJ, Koshel S, Zaporozhchenko V, Adler CJ, et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol. 2010;8:e1000536. doi: 10.1371/journal.pbio.1000536. PubMed DOI PMC
Brandt G, Haak W, Adler CJ, Roth C, Szécsényi-Nagy A, Karimnia S, et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science. 2013;342:257–61. doi: 10.1126/science.1241844. PubMed DOI PMC
Malmström H, Linderholm A, Skoglund P, Storå J, Sjödin P, Gilbert MTP, et al. Ancient mitochondrial DNA from the northern fringe of the Neolithic farming expansion in Europe sheds light on the dispersion process. Philos Trans R Soc Lond B Biol Sci. 2015;370:20130373. doi: 10.1098/rstb.2013.0373. PubMed DOI PMC
Malmström H, Gilbert MTP, Thomas MG, Brandström M, Storå J, Molnar P, et al. Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Curr Biol. 2009;19:1758–62. doi: 10.1016/j.cub.2009.09.017. PubMed DOI
Bollongino R, Nehlich O, Richards MP, Orschiedt J, Thomas MG, Sell C, et al. 2000 years of parallel societies in stone age Central Europe. Science. 2013;342:479. doi: 10.1126/science.1245049. PubMed DOI
Fu Q, Mittnik A, Johnson PLF, Bos K, Lari M, Bollongino R, et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr Biol. 2013;23:553–9. doi: 10.1016/j.cub.2013.02.044. PubMed DOI PMC
Bramanti B, Thomas MG, Haak W, Unterlaender M, Jores P, Tambets K, et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science. 2009;326:137–40. doi: 10.1126/science.1176869. PubMed DOI
Szécsényi-Nagy A, Keerl V, Jakucs J, Brandt G, Bánffy E, Alt KW. Ancient DNA evidence for a homogeneous maternal gene pool in sixth millennium cal BC Hungary and the Central European LBK. Early Farmers View Archaeol Sci Proc Br Acad. 2014;198:71–93. doi: 10.5871/bacad/9780197265758.003.0005. DOI
Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC
Hofmanová Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y, Díez-del-Molino D, van Dorp L, López S, Kousathanas A, Link V, Kirsanow K, Cassidy LM, Martiniano R, Strobel M, Scheu A, Kotsakis K, Halstead P, Triantaphyllou S, Kyparissi-Apostolika N, Urem-Kotsou D, Ziota C, Adaktylou F, Gopalan S, Bobo DM, Winkelbach L, Blöcher J, Unterländer M, Leuenberger C, Çilingiroğlu Ç, Horejs B, Gerritsen F, Shennan SJ, Bradley DG, Currat M, Veeramah KR, Wegmann D, Thomas MG, Papageorgopoulou C, Burger J. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci. 2016;113(25):6886–91. PubMed PMC
Adler CJ. Ancient DNA Studies of Human Evolution. PhD dissertation. Adelaide: University of Adelaide; 2012.
Rivollat M, Réveillas H, Mendisco F, Pemonge M-H, Justeau P, Couture C, et al. Ancient mitochondrial DNA from the middle neolithic necropolis of Obernai extends the genetic influence of the LBK to west of the Rhine. Am J Phys Anthropol. 2016;161:522–9. doi: 10.1002/ajpa.23055. PubMed DOI
Juras A, Chyleński M, Krenz-Niedbała M, Malmström H, Ehler E, Pospieszny Ł, et al. Investigating kinship of Neolithic post-LBK human remains from Krusza Zamkowa, Poland using ancient DNA. Forensic Sci Int Genet. 2017;26:30–9. doi: 10.1016/j.fsigen.2016.10.008. PubMed DOI
Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–11. doi: 10.1038/nature14317. PubMed DOI PMC
Posth C, Renaud G, Mittnik A, Drucker DG, Rougier H, Cupillard C, et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial population turnover in Europe. Curr Biol. 2016;26:827–33. doi: 10.1016/j.cub.2016.01.037. PubMed DOI
Omrak A, Günther T, Valdiosera C, Svensson EM, Malmström H, Kiesewetter H, et al. Genomic evidence establishes Anatolia as the source of the European neolithic gene pool. Curr Biol. 2015;26:270–5. doi: 10.1016/j.cub.2015.12.019. PubMed DOI
Yang DY, Eng B, Waye JS, Dudar JC, Saunders SR. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am J Phys Anthropol. 1998;105:539–43. doi: 10.1002/(SICI)1096-8644(199804)105:4<539::AID-AJPA10>3.0.CO;2-1. PubMed DOI
Svensson EM, Anderung C, Baubliene J, Persson P, Malmström H, Smith C, et al. Tracing genetic change over time using nuclear SNPs in ancient and modern cattle. Anim Genet. 2007;38:378–83. doi: 10.1111/j.1365-2052.2007.01620.x. PubMed DOI
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010:t5448. doi: 10.1101/pdb.prot5448. PubMed DOI
Günther T, Valdiosera C, Malmström H, Ureña I, Rodriguez-Varela R, Sverrisdóttir ÓO, et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc Natl Acad Sci. 2015;112:11917–22. doi: 10.1073/pnas.1509851112. PubMed DOI PMC
Templeton JEL, Brotherton PM, Llamas B, Soubrier J, Haak W, Cooper A, et al. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Investig Genet. 2013;4:26. doi: 10.1186/2041-2223-4-26. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Skoglund P, Storå J, Götherström A, Jakobsson M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J Archaeol Sci. 2013;40:4477–82. doi: 10.1016/j.jas.2013.07.004. DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2. doi: 10.14806/ej.17.1.200. DOI
Andrews SF. A quality control tool for high throughput sequence data. 2012.
Merriman B, Torrent I, Rothberg JM, Team R. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012;33:3397–417. doi: 10.1002/elps.201200424. PubMed DOI
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L. mapDamage2. 0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–4. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. doi: 10.1186/s13059-015-0776-0. PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. doi: 10.1038/nbt.1754. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC
Van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009;30:E386–94. doi: 10.1002/humu.20921. PubMed DOI
Vianello D, Sevini F, Castellani G, Lomartire L, Capri M, Franceschi C. HAPLOFIND: a New method for high‐throughput mtDNA Haplogroup assignment. Hum Mutat. 2013;34:1189–94. doi: 10.1002/humu.22356. PubMed DOI
Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 1979;2:224–7. doi: 10.1109/TPAMI.1979.4766909. PubMed DOI
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–91. PubMed PMC
Nei M, Li W-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci. 1979;76:5269–73. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC
Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995;139:457–62. PubMed PMC
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
Bandelt H-J, Forster P, Sykes BC, Richards MB. Mitochondrial portraits of human populations using median networks. Genetics. 1995;141:743–53. PubMed PMC
Bandelt H-J, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Polzin T, Daneshmand SV. On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett. 2003;31:12–20. doi: 10.1016/S0167-6377(02)00185-2. DOI
Czekaj-Zastawny A, Kabaciński J, Terberger T, Ilkiewicz J. Relations of Mesolithic hunter-gatherers of Pomerania (Poland) with neolithic cultures of central Europe. J Field Archaeol. 2013;38:195–209. doi: 10.1179/0093469013Z.00000000059. DOI
Lorkiewicz W, Płoszaj T, Jędrychowska-Dańska K, Żądzińska E, Strapagiel D, Haduch E, et al. Between the Baltic and Danubian worlds: the genetic affinities of a middle neolithic population from central Poland. PLoS One. 2015;10:e0118316. doi: 10.1371/journal.pone.0118316. PubMed DOI PMC
Czerniak L. Najstarsze społeczności rolnicze. Nowa epoka. In: Kobusiewicz M, editor. Pradzieje Wielkop. Od Epoki Kamienia Średniow. Poznań: Instytut Archeologii i Etnologii Polskiej Akademii Nauk; 2008. pp. 147–201.
Mucha E, Piontek J, Otocki P. Analiza antropologiczna neoliycznych szkieletów z Kruszy zamkowej, stan. 3, woj. Bydgoszcz. Archeol Pol. 1980;32:85–90.
Kadrow S. Kultura malicka. Dziedzictwo Cywilizacji Naddunajskich Małop. Na Przełomie Epoki Kamienia Miedzi Bibl. Muz Archeol. 2006;1:63–76.
Grygiel R. Wkład kultury malickiej w powstanie i rozwój grupy brzesko-kujawskiej kultury lendzielskiej : (Contributions of the Malice Culture to the origin and development of the Brześć Kujawski group of the Lengyel Culture) Kraków: Polska Akademia Umiejętności, Kraków; 1996.
Price TD, Bentley RA, Lüning J, Gronenborn D, Wahl J. Prehistoric human migration in the Linearbandkeramik of Central Europe. Antiquity. 2001;75:593–603. doi: 10.1017/S0003598X00088827. DOI
Bentley RA, Bickle P, Fibiger L, Nowell GM, Dale CW, Hedges RE, et al. Community differentiation and kinship among Europe’s first farmers. Proc Natl Acad Sci. 2012;109:9326–30. doi: 10.1073/pnas.1113710109. PubMed DOI PMC
Rasteiro R, Chikhi L. Female and male perspectives on the neolithic transition in Europe: clues from ancient and modern genetic data. PLoS One. 2013;8:e60944. doi: 10.1371/journal.pone.0060944. PubMed DOI PMC
Lacan M, Keyser C, Ricaut F-X, Brucato N, Tarrús J, Bosch A, et al. Ancient DNA suggests the leading role played by men in the Neolithic dissemination. Proc Natl Acad Sci. 2011;108:18255–9. doi: 10.1073/pnas.1113061108. PubMed DOI PMC
Lacan M, Keyser C, Ricaut F-X, Brucato N, Duranthon F, Guilaine J, et al. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc Natl Acad Sci. 2011;108:9788–91. doi: 10.1073/pnas.1100723108. PubMed DOI PMC