Mitochondrial genomes reveal an east to west cline of steppe ancestry in Corded Ware populations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
PubMed
30072694
PubMed Central
PMC6072757
DOI
10.1038/s41598-018-29914-5
PII: 10.1038/s41598-018-29914-5
Knihovny.cz E-zdroje
- MeSH
- běloši genetika MeSH
- dějiny starověku MeSH
- genom mitochondriální * MeSH
- lidé MeSH
- pastviny * MeSH
- starobylá DNA * MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
- Názvy látek
- starobylá DNA * MeSH
From around 4,000 to 2,000 BC the forest-steppe north-western Pontic region was occupied by people who shared a nomadic lifestyle, pastoral economy and barrow burial rituals. It has been shown that these groups, especially those associated with the Yamnaya culture, played an important role in shaping the gene pool of Bronze Age Europeans, which extends into present-day patterns of genetic variation in Europe. Although the genetic impact of these migrations from the forest-steppe Pontic region into central Europe have previously been addressed in several studies, the contribution of mitochondrial lineages to the people associated with the Corded Ware culture in the eastern part of the North European Plain remains contentious. In this study, we present mitochondrial genomes from 23 Late Eneolithic and Bronze Age individuals, including representatives of the north-western Pontic region and the Corded Ware culture from the eastern part of the North European Plain. We identified, for the first time in ancient populations, the rare mitochondrial haplogroup X4 in two Bronze Age Catacomb culture-associated individuals. Genetic similarity analyses show close maternal genetic affinities between populations associated with both eastern and Baltic Corded Ware culture, and the Yamnaya horizon, in contrast to larger genetic differentiation between populations associated with western Corded Ware culture and the Yamnaya horizon. This indicates that females with steppe ancestry contributed to the formation of populations associated with the eastern Corded Ware culture while more local people, likely of Neolithic farmer ancestry, contributed to the formation of populations associated with western Corded Ware culture.
Archaeological Centre Olomouc U Hradiska 42 6 779 00 Olomouc Czech Republic
Institute of Archaeological Heritage Brno v v i Kaloudova 30 614 00 Brno Czech Republic
Institute of Archaeology Jagiellonian University Gołębia 11 31 007 Kraków Poland
Muzeum Regionalne im Janusza Petera ul Zamojska 2 22 600 Tomaszów Lubelski Poland
Zobrazit více v PubMed
Ivanova SV, et al. ‘Yampil Inspirations’: A Study of the Dniester Cultural Contact Area at the Frontier of Pontic and Baltic Drainage Basins. Balt.-Pontic Stud. 2015;20:407–425. doi: 10.1515/bps-2017-0009. DOI
Włodarczak, P. Sekwencja czynności obrzędowych: problem korespondencji tradycji funeralnych kultury jamowej i kultury ceramiki sznurowej na Wyżynie Podolskiej. In Naddniestrzańskie kompleksy cmentarzysk kurhanowych społeczności z III i z pierwszej połowy II tysiąclecia przed Chr. w okolicach Jampola, obwód winnicki. Z badań nad północno-zachodnią rubieżą osadnictwa społeczności kręgu kultur “wczesnobrązowych” strefy pontyjskiej. Badania z lat 1984–2014. 314–340 (Archeologia Bimaris - Monografie 6, 2014).
Ivanova SV, Toschev GNL. Eneolithic and Bronze Age prologue Pontic societies. Forest-steppe middle Dniester and Prut drainage basins in the 4th/3rd-2nd millenium BC: a history of investigations. Balt.-Pontic Stud. 2015;20:7–39. doi: 10.1515/bps-2017-0001. DOI
Goslar, T., Klochko, V. I., Kośko, A., Włodarczak, P. & Żurkiewicz, D. Chronometry of Late Eneolithic and ‘Early Bronze’ Cultures in the Middle Dniester Area: Investigations of the Yampil Barrow Complex. In Baltic-Pontic Studies20, 257–292 (2015).
Kośko A, Klochko VI. Transit routes between the Baltic and Black Seas: early development stages – from the 3rd to the middle of the 1st millenium BC. An outline of research project. Balt.-Pontic Stud. 2009;14:9–18.
Morgunova N, Khokhlova O. Chronology and Periodization of the Pit-Grave Culture in the Area Between the Volga and Ural Rivers Based on 14C Dating and Paleopedological Research. Radiocarbon. 2013;55:1286–1296. doi: 10.1017/S0033822200048190. DOI
Kośko, A. Influences of the ‘Pre-Yamnaya’ (‘Pre-Pitgrave’) Communities from the Black Sea Steppe Area in Western European Cultures. Lénéolithique Début Lâge Bronze Dans Certain. Régions Eur (1985).
Rassamakin, Y. Y. The main directions of the development of early pastoral societies of northern Pontic Zone: 4500–2450 BC (Pre-Yamnaya Cultures and Yamnaya Culture). In Baltic-Pontic Studies2, 29–70 (1994).
Rassamakin, Y. Y. The Eneolithic of the Black Sea steppe: dynamics of cultural and economic development 4500–2300 BC. In Late Prehistoric exploitation of the Eurasian steppe 59–182 (Cambridge, 1999).
Shaposhnikova, O. G. Yamnaya kulturno-istoricheskaya obchnost. Arkheologiya Ukr. SSR 336–352 (1985).
Rassamakin, Y. Y. & Nikolova, A. Carpathian Imports and Imitations in Context of the Eneolithic and Early Bronze Age of the Black Sea Steppe Are. Import Imitation Archaeol. 51–87 (2008).
Anthony, D. W. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes the Modern World. (Princeton, Oxford: Princeton University Press, 2007).
Kośko, A. Eastern European Context for Studies on the Use of Wagons in the Baltic Sea Catchment Area of the 4th and 3th Millennia BC. Environ. Subsist. - Forty Years Janusz Kruks Settl. Stud. 429–440 (2013).
Allentoft ME, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167. doi: 10.1038/nature14507. PubMed DOI
Kośko A, Klochko VI. The Baltic Drainage Basin in the Recenstruction of the Map of Central Europe Held in Common by Northern - Pontic Early - Bronze Civilization Communities; 3200–1600 BC. An Outline of the Research Programme. Balt.-Pontic Stud. 2013;18:9–20.
Gimbutas, M. The First Wave of Eurasian Steppe Pastoralists into Copper Age Europe. J. Indo-Eur. Stud. 277–337 (1977).
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207. doi: 10.1038/nature14317. PubMed DOI PMC
Mittnik A, et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 2018;9:442. doi: 10.1038/s41467-018-02825-9. PubMed DOI PMC
Saag L, et al. Extensive Farming in Estonia Started through a Sex-Biased Migration from the Steppe. Curr. Biol. 2017;27:2185–2193.e6. doi: 10.1016/j.cub.2017.06.022. PubMed DOI
Lazaridis I, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–424. doi: 10.1038/nature19310. PubMed DOI PMC
Goldberg, A., Günther, T., Rosenberg, N. A. & Jakobsson, M. Ancient X chromosomes reveal contrasting sex bias in Neolithic and Bronze Age Eurasian migrations. Proc. Natl. Acad. Sci. 114, 2657–2662 (2017). PubMed PMC
Kristiansen K, et al. Re-theorising mobility and the formation of culture and language among the Corded Ware Culture in Europe. Antiquity. 2017;91:334–347. doi: 10.15184/aqy.2017.17. DOI
Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC
Nikitin AG, Ivanova S, Kiosak D, Badgerow J, Pashnick J. Subdivisions of haplogroups U and C encompass mitochondrial DNA lineages of Eneolithic–Early Bronze Age Kurgan populations of western North Pontic steppe. J. Hum. Genet. 2017;62:605–613. doi: 10.1038/jhg.2017.12. PubMed DOI
Juras A, et al. Investigating kinship of Neolithic post-LBK human remains from Krusza Zamkowa, Poland using ancient DNA. Forensic Sci. Int. Genet. 2017;26:30–39. doi: 10.1016/j.fsigen.2016.10.008. PubMed DOI
Carpenter ML, et al. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries. Am. J. Hum. Genet. 2013;93:852–864. doi: 10.1016/j.ajhg.2013.10.002. PubMed DOI PMC
Lampa S, Dahlö M, Olason PI, Hagberg J, Spjuth O. Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data. Giga Science. 2013;2:9. doi: 10.1186/2047-217X-2-9. PubMed DOI PMC
Günther T, et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl. Acad. Sci. 2015;112:11917–11922. doi: 10.1073/pnas.1509851112. PubMed DOI PMC
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010:pdb.prot5448. doi: 10.1101/pdb.prot5448. PubMed DOI
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma. Oxf. Engl. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Anderson S, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. doi: 10.1038/290457a0. PubMed DOI
Andrews RM, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999;23:147. doi: 10.1038/13779. PubMed DOI
Skoglund P, Storå J, Götherström A, Jakobsson M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 2013;40:4477–4482. doi: 10.1016/j.jas.2013.07.004. DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Andrews, S. A quality control tool for high throughput sequence data (2012).
Chyleński M, et al. Late Danubian mitochondrial genomes shed light into the Neolithisation of Central Europe in the 5th millennium BC. BMC Evol. Biol. 2017;17:80. doi: 10.1186/s12862-017-0924-0. PubMed DOI PMC
Merriman B, Ion Torrent R, Team D, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. 2012;33:3397–3417. doi: 10.1002/elps.201200424. PubMed DOI
Kircher, M. Analysis of High-Throughput Ancient DNA Sequencing Data. In Ancient DNA SE - 23 Methods in Molecular Biology. In Ancient DNA: Methods and Protocols (Humana Press, 2012). PubMed
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinforma. Oxf. Engl. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. doi: 10.1186/s13059-015-0776-0. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC
Vianello D, et al. HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment. Hum. Mutat. 2013;34:1189–1194. doi: 10.1002/humu.22356. PubMed DOI
van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009;30:E386–E394. doi: 10.1002/humu.20921. PubMed DOI
Lott MT, et al. mtDNA Variation and Analysis Using Mitomap and Mitomaster. Curr. Protoc. Bioinforma. 2013;44(1):23.1–26. PubMed PMC
Mathieson, I. et al. The genomic history of southeastern Europe. Nature (2018). PubMed PMC
Wilde S, et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. USA. 2014;111:4832–4837. doi: 10.1073/pnas.1316513111. PubMed DOI PMC
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2015).
Pedregosa F, et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Hunter JD. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
van der Maaten L, Hinton G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008;9:2579–2605.
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76:5269–73. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC
Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995;139:457–462. PubMed PMC
Jones ER, et al. The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers. Curr. Biol. CB. 2017;27:576–582. doi: 10.1016/j.cub.2016.12.060. PubMed DOI PMC
Röck AW, Dür A, van Oven M, Parson W. Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA) Forensic Sci. Int. Genet. 2013;7:601–609. doi: 10.1016/j.fsigen.2013.07.005. PubMed DOI PMC
Fernandes V, et al. The Arabian Cradle: Mitochondrial Relicts of the First Steps along the Southern Route out of Africa. Am. J. Hum. Genet. 2012;90:347–355. doi: 10.1016/j.ajhg.2011.12.010. PubMed DOI PMC
Skoglund P, et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science. 2014;344:747–750. doi: 10.1126/science.1253448. PubMed DOI
Skoglund P, et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science. 2012;336:466–469. doi: 10.1126/science.1216304. PubMed DOI
Juras, A. et al. Diverse origin of mitochondrial lineages in Iron Age Black Sea Scythians. Sci. Rep. 7, 43950 (2017). PubMed PMC
Brandt G, et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science. 2013;342:257–261. doi: 10.1126/science.1241844. PubMed DOI PMC
Keyser C, et al. Ancient DNA provides new insights into the history of south Siberian Kurgan people. Hum. Genet. 2009;126:395–410. doi: 10.1007/s00439-009-0683-0. PubMed DOI
Olalde I, et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018;555:190–196. doi: 10.1038/nature25738. PubMed DOI PMC
Lipson M, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551:368–372. doi: 10.1038/nature24476. PubMed DOI PMC