AmtDB: a database of ancient human mitochondrial genomes
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30247677
PubMed Central
PMC6324066
DOI
10.1093/nar/gky843
PII: 5106144
Knihovny.cz E-zdroje
- MeSH
- databáze genetické * MeSH
- genom mitochondriální * MeSH
- genomika * metody MeSH
- internetový prohlížeč MeSH
- lidé MeSH
- mitochondrie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ancient mitochondrial DNA is used for tracing human past demographic events due to its population-level variability. The number of published ancient mitochondrial genomes has increased in recent years, alongside with the development of high-throughput sequencing and capture enrichment methods. Here, we present AmtDB, the first database of ancient human mitochondrial genomes. Release version contains 1107 hand-curated ancient samples, freely accessible for download, together with the individual descriptors, including geographic location, radiocarbon dating, and archaeological culture affiliation. The database also features an interactive map for sample location visualization. AmtDB is a key platform for ancient population genetic studies and is available at https://amtdb.org.
Institute of Molecular Genetics of the ASCR Vídenská 1083 142 20 Prague 4 Czech Republic
Institute of Molecular Genetics of the ASCR Vídeňská 1083 142 20 Prague 4 Czech Republic
Zobrazit více v PubMed
Pääbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl. Acad. Sci. U.S.A. 1989; 86:1939–1943. PubMed PMC
Ramakrishnan U., Hadly E.A.. Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Mol. Ecol. 2009; 18:1310–1330. PubMed
Posth C., Renaud G., Mittnik A., Drucker D.G., Rougier H., Cupillard C., Valentin F., Thevenet C., Furtwängler A., Wißing C. et al. . Pleistocene mitochondrial genomes suggest a single major dispersal of non-africans and a late glacial population turnover in Europe. Curr. Biol. 2016; 26:827–833. PubMed
Fu Q., Posth C., Hajdinjak M., Petr M., Mallick S., Fernandes D., Furtwängler A., Haak W., Meyer M., Mittnik A. et al. . The genetic history of Ice Age Europe. Nature. 2016; 534:200–205. PubMed PMC
Brandt G., Haak W., Adler C.J., Roth C., Szecsenyi-Nagy A., Karimnia S., Moller-Rieker S., Meller H., Ganslmeier R., Friederich S. et al. . Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science. 2013; 342:257–261. PubMed PMC
Brotherton P., Haak W., Templeton J., Brandt G., Soubrier J., Jane Adler C., Richards S.M., Der Sarkissian C., Ganslmeier R., Friederich S. et al. . Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 2013; 4:1764. PubMed PMC
Gallego-Llorente M., Connell S., Jones E.R., Merrett D.C., Jeon Y., Eriksson A., Siska V., Gamba C., Meiklejohn C., Beyer R. et al. . The genetics of an early Neolithic pastoralist from the Zagros, Iran. Sci. Rep. 2016; 6:31326. PubMed PMC
Kılınç G.M., Omrak A., Özer F., Günther T., Büyükkarakaya A.M., Bıçakçı E., Baird D., Dönertaş H.M., Ghalichi A., Yaka R. et al. . The demographic development of the first farmers in Anatolia. Curr. Biol. 2016; 26:2659–2666. PubMed PMC
Lazaridis I., Nadel D., Rollefson G., Merrett D.C., Rohland N., Mallick S., Fernandes D., Novak M., Gamarra B., Sirak K. et al. . Genomic insights into the origin of farming in the ancient Near East. Nature. 2016; 536:419–424. PubMed PMC
Omrak A., Günther T., Valdiosera C., Svensson E.M., Malmström H., Kiesewetter H., Aylward W., Storå J., Jakobsson M., Götherström A.. Genomic evidence establishes anatolia as the source of the European neolithic gene pool. Curr. Biol. 2016; 26:270–275. PubMed
Haber M., Doumet-Serhal C., Scheib C., Xue Y., Danecek P., Mezzavilla M., Youhanna S., Martiniano R., Prado-Martinez J., Szpak M. et al. . Continuity and admixture in the last five millennia of levantine history from ancient canaanite and Present-Day lebanese genome sequences. Am. J. Hum. Genet. 2017; 101:274–282. PubMed PMC
Mathieson I., Alpaslan-Roodenberg S., Posth C., Szécsényi-Nagy A., Rohland N., Mallick S., Olalde I., Broomandkhoshbacht N., Candilio F., Cheronet O. et al. . The genomic history of southeastern Europe. Nature. 2018; 555:197–203. PubMed PMC
Olalde I., Brace S., Allentoft M.E., Armit I., Kristiansen K., Booth T., Rohland N., Mallick S., Szécsényi-Nagy A., Mittnik A. et al. . The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018; 555:190–196. PubMed PMC
Haak W., Balanovsky O., Sanchez J.J., Koshel S., Zaporozhchenko V., Adler C.J., Der Sarkissian C.S.I., Brandt G., Schwarz C., Nicklisch N. et al. . Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol. 2010; 8:e1000536. PubMed PMC
Chyleński M., Juras A., Ehler E., Malmström H., Piontek J., Jakobsson M., Marciniak A., Dabert M.. Late Danubian mitochondrial genomes shed light into the Neolithisation of Central Europe in the 5th millennium BC. BMC Evol. Biol. 2017; 17:80. PubMed PMC
Skoglund P., Malmstrom H., Raghavan M., Stora J., Hall P., Willerslev E., Gilbert M.T.P., Gotherstrom A., Jakobsson M.. Origins and genetic legacy of neolithic farmers and Hunter-Gatherers in Europe. Science. 2012; 336:466–469. PubMed
Skoglund P., Malmstrom H., Omrak A., Raghavan M., Valdiosera C., Gunther T., Hall P., Tambets K., Parik J., Sjogren K.-G. et al. . Genomic diversity and admixture differs for Stone-Age scandinavian foragers and farmers. Science. 2014; 344:747–750. PubMed
Bollongino R., Nehlich O., Richards M.P., Orschiedt J., Thomas M.G., Sell C., Fajkošová Z., Powell A., Burger J.. 2000 years of parallel societies in stone age central europe. Science. 2013; 342:479–481. PubMed
Gamba C., Jones E.R., Teasdale M.D., McLaughlin R.L., Gonzalez-Fortes G., Mattiangeli V., Domboróczki L., Kővári I., Pap I., Anders A. et al. . Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014; 5:5257. PubMed PMC
Lazaridis I., Patterson N., Mittnik A., Renaud G., Mallick S., Kirsanow K., Sudmant P.H., Schraiber J.G., Castellano S., Lipson M. et al. . Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014; 513:409–413. PubMed PMC
Lipson M., Szécsényi-Nagy A., Mallick S., Pósa A., Stégmár B., Keerl V., Rohland N., Stewardson K., Ferry M., Michel M. et al. . Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017; 551:368–372. PubMed PMC
Saag L., Varul L., Scheib C.L., Stenderup J., Allentoft M.E., Saag L., Pagani L., Reidla M., Tambets K., Metspalu E. et al. . Extensive farming in estonia started through a Sex-Biased migration from the steppe. Curr. Biol. 2017; 27:2185–2193. PubMed
Mittnik A., Wang C.-C., Pfrengle S., Daubaras M., Zariņa G., Hallgren F., Allmäe R., Khartanovich V., Moiseyev V., Tõrv M. et al. . The genetic prehistory of the Baltic Sea region. Nat. Commun. 2018; 9:442. PubMed PMC
Allentoft M.E., Sikora M., Sjögren K.-G., Rasmussen S., Rasmussen M., Stenderup J., Damgaard P.B., Schroeder H., Ahlström T., Vinner L. et al. . Population genomics of Bronze Age Eurasia. Nature. 2015; 522:167–172. PubMed
Haak W., Lazaridis I., Patterson N., Rohland N., Mallick S., Llamas B., Brandt G., Nordenfelt S., Harney E., Stewardson K. et al. . Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015; 522:207–211. PubMed PMC
De Barros Damgaard P., Marchi N., Rasmussen S., Peyrot M., Renaud G., Korneliussen T., Moreno-Mayar J.V., Pedersen M.W., Goldberg A., Usmanova E. et al. . 137 ancient human genomes from across the Eurasian steppes. Nature. 2018; 557:369–374. PubMed
Lee E.J., Renneberg R., Harder M., Krause-Kyora B., Rinne C., Mueller J., Nebel A., von Wurmb-Schwark N.. Collective burials among agro-pastoral societies in later Neolithic Germany: perspectives from ancient DNA. J. Archaeol. Sci. 2014; 51:174–180.
Juras A., Chyleński M., Krenz-Niedbała M., Malmström H., Ehler E., Pospieszny Ł., Łukasik S., Bednarczyk J., Piontek J., Jakobsson M. et al. . Investigating kinship of Neolithic post-LBK human remains from Krusza Zamkowa, Poland using ancient DNA. Forensic Sci. Int. Genet. 2017; 26:30–39. PubMed
Haak W., Brandt G., de Jong H.N., Meyer C., Ganslmeier R., Heyd V., Hawkesworth C., Pike A.W.G., Meller H., Alt K.W.. Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age. Proc. Natl. Acad. Sci. U.S.A. 2008; 105:18226–18231. PubMed PMC
Naumann E., Krzewińska M., Götherström A., Eriksson G.. Slaves as burial gifts in Viking Age Norway? Evidence from stable isotope and ancient DNA analyses. J. Archaeol. Sci. 2014; 41:533–540.
Malmström H., Vretemark M., Tillmar A., Durling M.B., Skoglund P., Gilbert M.T.P., Willerslev E., Holmlund G., Götherström A.. Finding the founder of Stockholm – A kinship study based on Y-chromosomal, autosomal and mitochondrial DNA. Ann. Anat. - Anat. Anzeiger. 2012; 194:138–145. PubMed
Parson W., Dür A.. EMPOP–a forensic mtDNA database. Forensic Sci. Int. Genet. 2007; 1:88–92. PubMed
Lott M.T., Leipzig J.N., Derbeneva O., Michael Xie H., Chalkia D., Sarmady M., Procaccio V., Wallace D.C.. MtDNA variation and analysis using Mitomap and Mitomaster. Curr. Protoc. Bioinform. 2013; 44:1.23.1–1.23.26. PubMed PMC
Clima R., Preste R., Calabrese C., Diroma M.A., Santorsola M., Scioscia G., Simone D., Shen L., Gasparre G., Attimonelli M.. HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor. Nucleic Acids Res. 2017; 45:D698–D706. PubMed PMC
Ingman M., Gyllensten U.. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res. 2006; 34:D749–D751. PubMed PMC
Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N.. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999; 23:147–147. PubMed
Behar D.M, van Oven M., Rosset S., Metspalu M., Loogväli E.-L., Silva N.M., Kivisild T., Torroni A., Villems R.. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 2012; 90:675–684. PubMed PMC
Fregel R., Delgado S.. HaploSearch: A tool for haplotype-sequence two-way transformation. Mitochondrion. 2011; 11:366–367. PubMed
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. PubMed PMC
Li H., Durbin R.. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25:1754–1760. PubMed PMC
Meyer M., Kircher M.. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010; 2010:pdb.prot5448. PubMed
Korneliussen T.S., Albrechtsen A., Nielsen R.. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014; 15:356. PubMed PMC