Hypoxia-inducible factors activator, roxadustat, increases pulmonary vascular resistance in rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38165762
PubMed Central
PMC10861249
DOI
10.33549/physiolres.935220
PII: 935220
Knihovny.cz E-zdroje
- MeSH
- angiotensin konvertující enzym 2 * MeSH
- cévní rezistence MeSH
- hypoxie chemicky indukované MeSH
- krysa rodu Rattus MeSH
- vazokonstriktory * farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin konvertující enzym 2 * MeSH
- vazokonstriktory * MeSH
Activators of hypoxia inducible factors (HIFs), such as roxadustat, are promising agents for anemia treatment. However, since HIFs are also involved in the regulation of the pulmonary circulation, we hypothesized that roxadustat increases pulmonary vascular resistance and vasoconstrictor reactivity. Using isolated, cell-free solution perfused rat lungs, we found perfusion pressure-flow curves to be shifted to higher pressures by 2 weeks of roxadustat treatment (10 mg/kg every other day), although not as much as by chronic hypoxic exposure. Vasoconstrictor reactivity to angiotensin II and acute hypoxic challenges was not altered by roxadustat. Since roxadustat may inhibit angiotensin-converting enzyme 2 (ACE2), we also tested a purported ACE2 activator, diminazene aceturate (DIZE, 0.1 mM). It produced paradoxical, unexplained pulmonary vasoconstriction. We conclude that the risk of serious pulmonary hypertension is not high when roxadustat is given for 14 days, but monitoring is advisable.
Zobrazit více v PubMed
Semenza GL. Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol. 2006;91:803–806. doi: 10.1113/expphysiol.2006.033498. PubMed DOI
Keeley T, Zhuang X, Lee J, Prange-Barczynska M, Tsukuda S, Morgan S, Harding A, et al. Hypoxic and pharmacological activation of HIFs inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports. 2021;35:109020. doi: 10.1016/j.celrep.2021.109020. PubMed DOI PMC
Suresh K, Shimoda LA. Lung circulation. Compr Physiol. 2016;6:897–943. doi: 10.1002/cphy.c140049. PubMed DOI PMC
Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W, Savai R. Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest. 2020;130:5638–5651. doi: 10.1172/JCI137558. PubMed DOI PMC
Tang H, Babicheva A, McDermott KM, Gu Y, Ayon RJ, Song S, Wang Z, et al. Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2018;314:L256–L275. doi: 10.1152/ajplung.00096.2017. PubMed DOI PMC
Hampl V, Herget J, Bíbová J, Baňasová A, Husková Z, Vaňourková Z, Jíchová Š, et al. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol Res. 2015;64:25–38. doi: 10.33549/physiolres.932861. PubMed DOI
Burmakin M, Fasching A, Kobayashi H, Urrutia AA, Damdimopoulos A, Palm F, Haase VH. Pharmacological HIF-PHD inhibition reduces renovascular resistance and increases glomerular filtration by stimulating nitric oxide generation. Acta Physiol. 2021;233:e13668. doi: 10.1111/apha.13668. PubMed DOI
Bělohlávková S, Šimák J, Kokešová A, Hniličková O, Hampl V. Fenfluramine-induced pulmonary vasoconstriction: role of serotonin receptors and potassium channels. J Appl Physiol. 2001;91:755–761. doi: 10.1152/jappl.2001.91.2.755. PubMed DOI
Herget J, Chovanec M. Isolated perfused murine lung: a well characterized preparation for studying lung vascular function. Drug Discov Today Dis Models. 2010;7:131–135. doi: 10.1016/j.ddmod.2011.03.008. DOI
Qaradakhi T, Gadanec LK, McSweeney KR, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, et al. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol. 2020;47:751–758. doi: 10.1111/1440-1681.13251. PubMed DOI
Dawson CA, Linehan JH, Bronikowski TA. Pressure and flow in the pulmonary vascular bed. In: Weir EK, Reeves JT, editors. Pulmonary Vascular Physiology and Pathophysiology. Marcel Dekker; New York: 1989. pp. 51–105.
Hampl V, Archer SL, Nelson DP, Weir EK. Chronic EDRF inhibition and hypoxia: effects on pulmonary circulation and systemic blood pressure. J Appl Physiol. 1993;75:1748–1757. doi: 10.1152/jappl.1993.75.4.1748. PubMed DOI
Hampl V, Bíbová J, Baňasová A, Uhlík J, Miková D, Hniličková O, Lachmanová V, et al. Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2006;290:L11–L20. doi: 10.1152/ajplung.00023.2005. PubMed DOI
Yu J, Wang S, Shi W, Zhou W, Niu Y, Huang S, Zhang Y, et al. Roxadustat prevents Ang II hypertension by targeting angiotensin receptors and eNOS. JCI Insight. 2021;6:e133690. doi: 10.1172/jci.insight.133690. PubMed DOI PMC
Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, et al. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage gated potassium channel, Kv1.5. FASEB J. 2001;15:1801–1803. doi: 10.1096/fj.00-0649fje. PubMed DOI
Whitman EM, Pisarcik S, Luke T, Fallon M, Wang J, Sylvester JT, Semenza GL, et al. Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol. 2008;294:L309–L318. doi: 10.1152/ajplung.00091.2007. PubMed DOI
Shenoy V, Gjymishka A, Jarajapu YP, Qi Y, Afzal A, Rigatto K, Ferreira AJ, et al. Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. Am J Respir Crit Care Med. 2013;187:648–657. doi: 10.1164/rccm.201205-0880OC. PubMed DOI PMC
da Silva Oliveira GL, de Freitas RM. Diminazene aceturate - An antiparasitic drug of antiquity: Advances in pharmacology & therapeutics. Pharmacol Res. 2015;102:138–157. doi: 10.1016/j.phrs.2015.10.005. PubMed DOI
Jernigan NL, Naik JS, Resta TC. Acid-sensing ion channel 1 contributes to pulmonary arterial smooth muscle cell depolarization following hypoxic pulmonary hypertension. J Physiol. 2021;599:4749–4762. doi: 10.1113/JP282231. PubMed DOI PMC
Edmonston DL, Parikh KS, Rajagopal S, Shaw LK, Abraham D, Grabner A, Sparks MA, et al. Pulmonary hypertension subtypes and mortality in CKD. Am J Kidney Dis. 2020;75:713–724. doi: 10.1053/j.ajkd.2019.08.027. PubMed DOI PMC