Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain

. 2022 Jan 11 ; 23 (2) : . [epub] 20220111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054954

Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.

Zobrazit více v PubMed

Guiblet W.M., Cremona M.A., Harris R.S., Chen D., Eckert K.A., Chiaromonte F., Huang Y.-F., Makova K.D. Non-B DNA: A Major Contributor to Small- and Large-Scale Variation in Nucleotide Substitution Frequencies across the Genome. Nucleic Acids Res. 2021;49:1497–1516. doi: 10.1093/nar/gkaa1269. PubMed DOI PMC

Brázda V., Bartas M., Bowater R.P. Evolution of Diverse Strategies for Promoter Regulation. Trends Genet. 2021;37:730–744. doi: 10.1016/j.tig.2021.04.003. PubMed DOI

Lyons S.M., Kharel P., Akiyama Y., Ojha S., Dave D., Tsvetkov V., Merrick W., Ivanov P., Anderson P. EIF4G Has Intrinsic G-Quadruplex Binding Activity That Is Required for TiRNA Function. Nucleic Acids Res. 2020;48:6223–6233. doi: 10.1093/nar/gkaa336. PubMed DOI PMC

Mukherjee A.K., Sharma S., Chowdhury S. Non-Duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet. 2019;35:129–144. doi: 10.1016/j.tig.2018.11.001. PubMed DOI PMC

Hayward B.E., Usdin K. Mechanisms of Genome Instability in the Fragile X-Related Disorders. Genes. 2021;12:1633. doi: 10.3390/genes12101633. PubMed DOI PMC

Schaich M.A., Van Houten B. Searching for DNA Damage: Insights from Single Molecule Analysis. Front. Mol. Biosci. 2021;8:772877. doi: 10.3389/fmolb.2021.772877. PubMed DOI PMC

Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC

Zhao J., Bacolla A., Wang G., Vasquez K.M. Non-B DNA Structure-Induced Genetic Instability and Evolution. Cell. Mol. Life Sci. 2010;67:43–62. doi: 10.1007/s00018-009-0131-2. PubMed DOI PMC

Herbert A. Z-DNA and Z-RNA in Human Disease. Commun. Biol. 2019;2:7. doi: 10.1038/s42003-018-0237-x. PubMed DOI PMC

Roy R., Chakraborty P., Chatterjee A., Sarkar J. Comparative Review on Left-Handed Z-DNA. Front. Biosci. 2021;26:29–35. PubMed

Rajeswari M.R. DNA Triplex Structures in Neurodegenerative Disorder, Friedreich’s Ataxia. J. Biosci. 2012;37:519–532. doi: 10.1007/s12038-012-9219-1. PubMed DOI

Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC

Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC

Brázda V., Coufal J., Liao J.C.C., Arrowsmith C.H. Preferential Binding of IFI16 Protein to Cruciform Structure and Superhelical DNA. Biochem. Biophys. Res. Commun. 2012;422:716–720. doi: 10.1016/j.bbrc.2012.05.065. PubMed DOI

Schwartz T., Rould M.A., Lowenhaupt K., Herbert A., Rich A. Crystal Structure of the Zalpha Domain of the Human Editing Enzyme ADAR1 Bound to Left-Handed Z-DNA. Science. 1999;284:1841–1845. doi: 10.1126/science.284.5421.1841. PubMed DOI

Placido D., Brown B.A., Lowenhaupt K., Rich A., Athanasiadis A. A Left-Handed RNA Double Helix Bound by the Z α Domain of the RNA-Editing Enzyme ADAR1. Structure. 2007;15:395–404. doi: 10.1016/j.str.2007.03.001. PubMed DOI PMC

Ha S.C., Kim D., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. The Crystal Structure of the Second Z-DNA Binding Domain of Human DAI (ZBP1) in Complex with Z-DNA Reveals an Unusual Binding Mode to Z-DNA. Proc. Natl. Acad. Sci. USA. 2008;105:20671–20676. doi: 10.1073/pnas.0810463106. PubMed DOI PMC

Schwartz T., Behlke J., Lowenhaupt K., Heinemann U., Rich A. Structure of the DLM-1–Z-DNA Complex Reveals a Conserved Family of Z-DNA-Binding Proteins. Nat. Struct. Mol. Biol. 2001;8:761–765. doi: 10.1038/nsb0901-761. PubMed DOI

Kim D., Hur J., Park K., Bae S., Shin D., Ha S.C., Hwang H.-Y., Hohng S., Lee J.-H., Lee S., et al. Distinct Z-DNA Binding Mode of a PKR-like Protein Kinase Containing a Z-DNA Binding Domain (PKZ) Nucleic Acids Res. 2014;42:5937–5948. doi: 10.1093/nar/gku189. PubMed DOI PMC

de Rosa M., Zacarias S., Athanasiadis A. Structural Basis for Z-DNA Binding and Stabilization by the Zebrafish Z-DNA Dependent Protein Kinase PKZ. Nucleic Acids Res. 2013;41:9924–9933. doi: 10.1093/nar/gkt743. PubMed DOI PMC

Kuś K., Rakus K., Boutier M., Tsigkri T., Gabriel L., Vanderplasschen A., Athanasiadis A. The Structure of the Cyprinid Herpesvirus 3 ORF112-Zα·Z-DNA Complex Reveals a Mechanism of Nucleic Acids Recognition Conserved with E3L, a Poxvirus Inhibitor of Interferon Response. J. Biol. Chem. 2015;290:30713–30725. doi: 10.1074/jbc.M115.679407. PubMed DOI PMC

Ha S.C., Lokanath N.K., Van Quyen D., Wu C.A., Lowenhaupt K., Rich A., Kim Y.-G., Kim K.K. A Poxvirus Protein Forms a Complex with Left-Handed Z-DNA: Crystal Structure of a Yatapoxvirus Zα Bound to DNA. Proc. Natl. Acad. Sci. USA. 2004;101:14367–14372. doi: 10.1073/pnas.0405586101. PubMed DOI PMC

Nikpour N., Salavati R. The RNA Binding Activity of the First Identified Trypanosome Protein with Z-DNA-Binding Domains. Sci. Rep. 2019;9:5904. doi: 10.1038/s41598-019-42409-1. PubMed DOI PMC

Mitsui Y., Langridge R., Shortle B.E., Cantor C.R., Grant R.C., Kodama M., Wells R.D. Physical and Enzymatic Studies on Poly d(I–C).Poly d(I–C), an Unusual Double-Helical DNA. Nature. 1970;228:1166–1169. doi: 10.1038/2281166a0. PubMed DOI

Wang A.H.-J., Quigley G.J., Kolpak F.J., Crawford J.L., van Boom J.H., van der Marel G., Rich A. Molecular Structure of a Left-Handed Double Helical DNA Fragment at Atomic Resolution. Nature. 1979;282:680–686. doi: 10.1038/282680a0. PubMed DOI

Ha S.C., Lowenhaupt K., Rich A., Kim Y.-G., Kim K.K. Crystal Structure of a Junction between B-DNA and Z-DNA Reveals Two Extruded Bases. Nature. 2005;437:1183–1186. doi: 10.1038/nature04088. PubMed DOI

Zhang Y., Cui Y., An R., Liang X., Li Q., Wang H., Wang H., Fan Y., Dong P., Li J., et al. Topologically Constrained Formation of Stable Z-DNA from Normal Sequence under Physiological Conditions. J. Am. Chem. Soc. 2019;141:7758–7764. doi: 10.1021/jacs.8b13855. PubMed DOI

Renčiuk D., Kypr J., Vorlíčková M. CGG Repeats Associated with Fragile X Chromosome Form Left-Handed Z-DNA Structure. Biopolymers. 2011;95:174–181. doi: 10.1002/bip.21555. PubMed DOI

Bae S., Kim D., Kim K.K., Kim Y.-G., Hohng S. Intrinsic Z-DNA Is Stabilized by the Conformational Selection Mechanism of Z-DNA-Binding Proteins. J. Am. Chem. Soc. 2011;133:668–671. doi: 10.1021/ja107498y. PubMed DOI

Dumat B., Larsen A.F., Wilhelmsson L.M. Studying Z-DNA and B- to Z-DNA Transitions Using a Cytosine Analogue FRET-Pair. Nucleic Acids Res. 2016;44:e101. doi: 10.1093/nar/gkw114. PubMed DOI PMC

Beknazarov N., Jin S., Poptsova M. Deep Learning Approach for Predicting Functional Z-DNA Regions Using Omics Data. Sci. Rep. 2020;10:19134. doi: 10.1038/s41598-020-76203-1. PubMed DOI PMC

Champ P.C., Maurice S., Vargason J.M., Camp T., Ho P.S. Distributions of Z-DNA and Nuclear Factor I in Human Chromosome 22: A Model for Coupled Transcriptional Regulation. Nucleic Acids Res. 2004;32:6501–6510. doi: 10.1093/nar/gkh988. PubMed DOI PMC

Ho P.S., Mooers B.H. Z-DNA Crystallography. Biopolymers. 1997;14:65–90. doi: 10.1002/(SICI)1097-0282(1997)44:1<65::AID-BIP5>3.0.CO;2-Y. PubMed DOI

Herbert A. ALU Non-B-DNA Conformations, Flipons, Binary Codes and Evolution. R. Soc. Open Sci. 2020;7:200222. doi: 10.1098/rsos.200222. PubMed DOI PMC

Fleming A.M., Zhu J., Ding Y., Esders S., Burrows C.J. Oxidative Modification of Guanine in a Potential Z-DNA-Forming Sequence of a Gene Promoter Impacts Gene Expression. Chem. Res. Toxicol. 2019;32:899–909. doi: 10.1021/acs.chemrestox.9b00041. PubMed DOI PMC

Li H., Xiao J., Li J., Lu L., Feng S., Dröge P. Human Genomic Z-DNA Segments Probed by the Zα Domain of ADAR1. Nucleic Acids Res. 2009;37:2737–2746. doi: 10.1093/nar/gkp124. PubMed DOI PMC

Shin S.-I., Ham S., Park J., Seo S.H., Lim C.H., Jeon H., Huh J., Roh T.-Y. Z-DNA-Forming Sites Identified by ChIP-Seq Are Associated with Actively Transcribed Regions in the Human Genome. DNA Res. 2016;23:477–486. doi: 10.1093/dnares/dsw031. PubMed DOI PMC

Fogg J.M., Randall G.L., Pettitt B.M., Sumners D.W.L., Harris S.A., Zechiedrich L. Bullied No More: When and How DNA Shoves Proteins Around. Q. Rev. Biophys. 2012;45:257–299. doi: 10.1017/S0033583512000054. PubMed DOI PMC

Hall K., Cruz P., Tinoco I., Jovin T.M., van de Sande J.H. ‘Z-RNA’—A Left-Handed RNA Double Helix. Nature. 1984;311:584–586. doi: 10.1038/311584a0. PubMed DOI

Zhang T., Yin C., Boyd D.F., Quarato G., Ingram J.P., Shubina M., Ragan K.B., Ishizuka T., Crawford J.C., Tummers B., et al. Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell. 2020;180:1115–1129.e13. doi: 10.1016/j.cell.2020.02.050. PubMed DOI PMC

Cer R.Z., Donohue D.E., Mudunuri U.S., Temiz N.A., Loss M.A., Starner N.J., Halusa G.N., Volfovsky N., Yi M., Luke B.T., et al. Non-B DB v2.0: A Database of Predicted Non-B DNA-Forming Motifs and Its Associated Tools. Nucleic Acids Res. 2013;41:D94–D100. doi: 10.1093/nar/gks955. PubMed DOI PMC

Herbert A., Lowenhaupt K., Spitzner J., Rich A. Double-Stranded RNA Adenosine Deaminase Binds Z-DNA in Vitro. Nucleic Acids Symp. Ser. 1995;33:16–19. PubMed

Chiang D.C., Li Y., Ng S.K. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front. Immunol. 2021;11:3779. doi: 10.3389/fimmu.2020.625504. PubMed DOI PMC

Lee A.-R., Kim N.-H., Seo Y.-J., Choi S.-R., Lee J.-H. Thermodynamic Model for B-Z Transition of DNA Induced by Z-DNA Binding Proteins. Molecules. 2018;23:2748. doi: 10.3390/molecules23112748. PubMed DOI PMC

Wang H., Wang G., Zhang L., Zhang J., Zhang J., Wang Q., Billiar T.R. ADAR1 Suppresses the Activation of Cytosolic RNA-Sensing Signaling Pathways to Protect the Liver from Ischemia/Reperfusion Injury. Sci. Rep. 2016;6:20248. doi: 10.1038/srep20248. PubMed DOI PMC

Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K., et al. DAI (DLM-1/ZBP1) Is a Cytosolic DNA Sensor and an Activator of Innate Immune Response. Nature. 2007;448:501–505. doi: 10.1038/nature06013. PubMed DOI

Kuriakose T., Kanneganti T.-D. ZBP1: Innate Sensor Regulating Cell Death and Inflammation. Trends Immunol. 2018;39:123–134. doi: 10.1016/j.it.2017.11.002. PubMed DOI PMC

Fischer S.E.J., Ruvkun G. Caenorhabditis Elegans ADAR Editing and the ERI-6/7/MOV10 RNAi Pathway Silence Endogenous Viral Elements and LTR Retrotransposons. Proc. Natl. Acad. Sci. USA. 2020;117:5987–5996. doi: 10.1073/pnas.1919028117. PubMed DOI PMC

Kahmann J.D., Wecking D.A., Putter V., Lowenhaupt K., Kim Y.-G., Schmieder P., Oschkinat H., Rich A., Schade M. The Solution Structure of the N-Terminal Domain of E3L Shows a Tyrosine Conformation That May Explain Its Reduced Affinity to Z-DNA in Vitro. Proc. Natl. Acad. Sci. USA. 2004;101:2712–2717. doi: 10.1073/pnas.0308612100. PubMed DOI PMC

Thakur M., Seo E.J., Dever T.E. Variola Virus E3L Zα Domain, but Not Its Z-DNA Binding Activity, Is Required for PKR Inhibition. RNA. 2014;20:214–227. doi: 10.1261/rna.042341.113. PubMed DOI PMC

Kim Y.-G., Muralinath M., Brandt T., Pearcy M., Hauns K., Lowenhaupt K., Jacobs B.L., Rich A. A Role for Z-DNA Binding in Vaccinia Virus Pathogenesis. Proc. Natl. Acad. Sci. USA. 2003;100:6974–6979. doi: 10.1073/pnas.0431131100. PubMed DOI PMC

Deigendesch N., Koch-Nolte F., Rothenburg S. ZBP1 Subcellular Localization and Association with Stress Granules Is Controlled by Its Z-DNA Binding Domains. Nucleic Acids Res. 2006;34:5007–5020. doi: 10.1093/nar/gkl575. PubMed DOI PMC

Ng S.K., Weissbach R., Ronson G.E., Scadden A.D.J. Proteins That Contain a Functional Z-DNA-Binding Domain Localize to Cytoplasmic Stress Granules. Nucleic Acids Res. 2013;41:9786–9799. doi: 10.1093/nar/gkt750. PubMed DOI PMC

Taghavi N., Samuel C.E. RNA-Dependent Protein Kinase PKR and the Z-DNA Binding Orthologue PKZ Differ in Their Capacity to Mediate Initiation Factor EIF2α-Dependent Inhibition of Protein Synthesis and Virus-Induced Stress Granule Formation. Virology. 2013;443:48–58. doi: 10.1016/j.virol.2013.04.020. PubMed DOI PMC

Licht K., Jantsch M.F. The Other Face of an Editor: ADAR1 Functions in Editing-Independent Ways. Bioessays. 2017;39:1700129. doi: 10.1002/bies.201700129. PubMed DOI

Herbert A., Schade M., Lowenhaupt K., Alfken J., Schwartz T., Shlyakhtenko L.S., Lyubchenko Y.L., Rich A. The Z α Domain from Human ADAR1 Binds to the Z-DNA Conformer of Many Different Sequences. Nucleic Acids Res. 1998;26:3486–3493. doi: 10.1093/nar/26.15.3486. PubMed DOI PMC

Kim U., Wang Y., Sanford T., Zeng Y., Nishikura K. Molecular Cloning of CDNA for Double-Stranded RNA Adenosine Deaminase, a Candidate Enzyme for Nuclear RNA Editing. Proc. Natl. Acad. Sci. USA. 1994;91:11457–11461. doi: 10.1073/pnas.91.24.11457. PubMed DOI PMC

Ha S.C., Choi J., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. The Structures of Non-CG-Repeat Z-DNAs Co-Crystallized with the Z-DNA-Binding Domain, HZα ADAR1. Nucleic Acids Res. 2009;37:629–637. doi: 10.1093/nar/gkn976. PubMed DOI PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Athanasiadis A., Placido D., Maas S., Brown B.A., Lowenhaupt K., Rich A. The Crystal Structure of the Z β Domain of the RNA-Editing Enzyme ADAR1 Reveals Distinct Conserved Surfaces among Z-Domains. J. Mol. Biol. 2005;351:496–507. doi: 10.1016/j.jmb.2005.06.028. PubMed DOI

Schade M., Turner C.J., Kühne R., Schmieder P., Lowenhaupt K., Herbert A., Rich A., Oschkinat H. The Solution Structure of the Zα Domain of the Human RNA Editing Enzyme ADAR1 Reveals a Prepositioned Binding Surface for Z-DNA. Proc. Natl. Acad. Sci. USA. 1999;96:12465–12470. doi: 10.1073/pnas.96.22.12465. PubMed DOI PMC

Kim K., Khayrutdinov B.I., Lee C.-K., Cheong H.-K., Kang S.W., Park H., Lee S., Kim Y.-G., Jee J., Rich A., et al. Solution Structure of the Z β Domain of Human DNA-Dependent Activator of IFN-Regulatory Factors and Its Binding Modes to B- and Z-DNAs. Proc. Natl. Acad. Sci. USA. 2011;108:6921–6926. doi: 10.1073/pnas.1014898107. PubMed DOI PMC

Park C., Zheng X., Park C.Y., Kim J., Lee S.K., Won H., Choi J., Kim Y.-G., Choi H.-J. Dual Conformational Recognition by Z-DNA Binding Protein Is Important for the B–Z Transition Process. Nucleic Acids Res. 2020;48:12957–12971. doi: 10.1093/nar/gkaa1115. PubMed DOI PMC

Krissinel E., Henrick K. Secondary-Structure Matching (SSM), a New Tool for Fast Protein Structure Alignment in Three Dimensions. Acta Cryst. D Biol. Cryst. 2004;60:2256–2268. doi: 10.1107/S0907444904026460. PubMed DOI

Leu J.Y., Chua P.R., Roeder G.S. The Meiosis-Specific Hop2 Protein of S. Cerevisiae Ensures Synapsis between Homologous Chromosomes. Cell. 1998;94:375–386. doi: 10.1016/S0092-8674(00)81480-4. PubMed DOI

Chan Y.-L., Brown M.S., Qin D., Handa N., Bishop D.K. The Third Exon of the Budding Yeast Meiotic Recombination Gene HOP2 Is Required for Calcium-Dependent and Recombinase Dmc1-Specific Stimulation of Homologous Strand Assimilation. J. Biol. Chem. 2014;289:18076–18086. doi: 10.1074/jbc.M114.558601. PubMed DOI PMC

Mizuno N., Voordouw G., Miki K., Sarai A., Higuchi Y. Crystal Structure of Dissimilatory Sulfite Reductase D (DsrD) Protein—Possible Interaction with B- and Z-DNA by Its Winged-Helix Motif. Structure. 2003;11:1133–1140. doi: 10.1016/S0969-2126(03)00156-4. PubMed DOI

Hung K.-W., Tsai J.-Y., Juan T.-H., Hsu Y.-L., Hsiao C.-D., Huang T.-H. Crystal Structure of the Klebsiella Pneumoniae NFeoB/FeoC Complex and Roles of FeoC in Regulation of Fe2+ Transport by the Bacterial Feo System. J. Bacteriol. 2012;194:6518–6526. doi: 10.1128/JB.01228-12. PubMed DOI PMC

Aramini J.M., Rossi P., Cort J.R., Ma L.-C., Xiao R., Acton T.B., Montelione G.T. Solution NMR Structure of the Plasmid-Encoded Fimbriae Regulatory Protein PefI from Salmonella Enterica Serovar Typhimurium. Proteins Struct. Funct. Bioinform. 2011;79:335–339. doi: 10.1002/prot.22869. PubMed DOI PMC

Sleeth K.M., Sørensen C.S., Issaeva N., Dziegielewski J., Bartek J., Helleday T. RPA Mediates Recombination Repair during Replication Stress and Is Displaced from DNA by Checkpoint Signalling in Human Cells. J. Mol. Biol. 2007;373:38–47. doi: 10.1016/j.jmb.2007.07.068. PubMed DOI

Grudic A., Jul-Larsen A., Haring S.J., Wold M.S., Lønning P.E., Bjerkvig R., Bøe S.O. Replication Protein A Prevents Accumulation of Single-Stranded Telomeric DNA in Cells That Use Alternative Lengthening of Telomeres. Nucleic Acids Res. 2007;35:7267–7278. doi: 10.1093/nar/gkm738. PubMed DOI PMC

Erdile L.F., Wold M.S., Kelly T.J. The Primary Structure of the 32-KDa Subunit of Human Replication Protein A. J. Biol. Chem. 1990;265:3177–3182. doi: 10.1016/S0021-9258(19)39750-9. PubMed DOI

Maestroni L., Audry J., Luciano P., Coulon S., Géli V., Corda Y. RPA and Pif1 Cooperate to Remove G-Rich Structures at Both Leading and Lagging Strand. Cell Stress. 2020;4:48–63. doi: 10.15698/cst2020.03.214. PubMed DOI PMC

Seol J.H., Feldman R.M., Zachariae W., Shevchenko A., Correll C.C., Lyapina S., Chi Y., Galova M., Claypool J., Sandmeyer S., et al. Cdc53/Cullin and the Essential Hrt1 RING-H2 Subunit of SCF Define a Ubiquitin Ligase Module That Activates the E2 Enzyme Cdc34. Genes Dev. 1999;13:1614–1626. doi: 10.1101/gad.13.12.1614. PubMed DOI PMC

Sweeney M.A., Iakova P., Maneix L., Shih F.-Y., Cho H.E., Sahin E., Catic A. The Ubiquitin Ligase Cullin-1 Associates with Chromatin and Regulates Transcription of Specific c-MYC Target Genes. Sci. Rep. 2020;10:13942. doi: 10.1038/s41598-020-70610-0. PubMed DOI PMC

Barford D. Structural Interconversions of the Anaphase-Promoting Complex/Cyclosome (APC/C) Regulate Cell Cycle Transitions. Curr. Opin. Struct. Biol. 2020;61:86–97. doi: 10.1016/j.sbi.2019.11.010. PubMed DOI

Skibbens R.V. Buck the Establishment: Reinventing Sister Chromatid Cohesion. Trends Cell Biol. 2010;20:507–513. doi: 10.1016/j.tcb.2010.06.003. PubMed DOI

Zachariae W., Shevchenko A., Andrews P.D., Ciosk R., Galova M., Stark M.J., Mann M., Nasmyth K. Mass Spectrometric Analysis of the Anaphase-Promoting Complex from Yeast: Identification of a Subunit Related to Cullins. Science. 1998;279:1216–1219. doi: 10.1126/science.279.5354.1216. PubMed DOI

Chiu Y.-H., MacMillan J.B., Chen Z.J. RNA Polymerase III Detects Cytosolic DNA and Induces Type-I Interferons Through the RIG-I Pathway. Cell. 2009;138:576–591. doi: 10.1016/j.cell.2009.06.015. PubMed DOI PMC

Yan J., Beattie T.R., Rojas A.L., Schermerhorn K., Gristwood T., Trinidad J.C., Albers S.V., Roversi P., Gardner A.F., Abrescia N.G.A., et al. Identification and Characterization of a Heterotrimeric Archaeal DNA Polymerase Holoenzyme. Nat. Commun. 2017;8:15075. doi: 10.1038/ncomms15075. PubMed DOI PMC

Enomoto R., Kinebuchi T., Sato M., Yagi H., Kurumizaka H., Yokoyama S. Stimulation of DNA Strand Exchange by the Human TBPIP/Hop2-Mnd1 Complex. J. Biol. Chem. 2006;281:5575–5581. doi: 10.1074/jbc.M506506200. PubMed DOI

Zangen D., Kaufman Y., Zeligson S., Perlberg S., Fridman H., Kanaan M., Abdulhadi-Atwan M., Abu Libdeh A., Gussow A., Kisslov I., et al. XX Ovarian Dysgenesis Is Caused by a PSMC3IP/HOP2 Mutation That Abolishes Coactivation of Estrogen-Driven Transcription. Am. J. Hum. Genet. 2011;89:572–579. doi: 10.1016/j.ajhg.2011.09.006. PubMed DOI PMC

Rudnicka A., Yamauchi Y. Ubiquitin in Influenza Virus Entry and Innate Immunity. Viruses. 2016;8:293. doi: 10.3390/v8100293. PubMed DOI PMC

Carter-Timofte M.E., Hansen A.F., Mardahl M., Fribourg S., Rapaport F., Zhang S.-Y., Casanova J.-L., Paludan S.R., Christiansen M., Larsen C.S., et al. Varicella-Zoster Virus CNS Vasculitis and RNA Polymerase III Gene Mutation in Identical Twins. Neurol.-Neuroimmunol. Neuroinflamm. 2018;5:e500. doi: 10.1212/NXI.0000000000000500. PubMed DOI PMC

Van Quyen D., Ha S.C., Lowenhaupt K., Rich A., Kim K.K., Kim Y.-G. Characterization of DNA-Binding Activity of Zα Domains from Poxviruses and the Importance of the β-Wing Regions in Converting B-DNA to Z-DNA. Nucleic Acids Res. 2007;35:7714–7720. doi: 10.1093/nar/gkm748. PubMed DOI PMC

Chemes L.B., de Prat-Gay G., Sánchez I.E. Convergent Evolution and Mimicry of Protein Linear Motifs in Host-Pathogen Interactions. Curr. Opin. Struct. Biol. 2015;32:91–101. doi: 10.1016/j.sbi.2015.03.004. PubMed DOI

Tomii K., Sawada Y., Honda S. Convergent Evolution in Structural Elements of Proteins Investigated Using Cross Profile Analysis. BMC Bioinform. 2012;13:11. doi: 10.1186/1471-2105-13-11. PubMed DOI PMC

Brázda V., Červeň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules. 2018;23:2341. doi: 10.3390/molecules23092341. PubMed DOI PMC

Bartas M., Bažantová P., Brázda V., Liao J.C., Červeň J., Pečinka P. Identification of Distinct Amino Acid Composition of Human Cruciform Binding Proteins. Mol. Biol. 2019;53:97–106. doi: 10.1134/S0026893319010023. PubMed DOI

Sousounis K., Haney C.E., Cao J., Sunchu B., Tsonis P.A. Conservation of the Three-Dimensional Structure in Non-Homologous or Unrelated Proteins. Hum. Genom. 2012;6:10. doi: 10.1186/1479-7364-6-10. PubMed DOI PMC

Zhang Y., Skolnick J. TM-Align: A Protein Structure Alignment Algorithm Based on the TM-Score. Nucleic Acids Res. 2005;33:2302–2309. doi: 10.1093/nar/gki524. PubMed DOI PMC

Perrakis A., Sixma T.K. AI Revolutions in Biology. EMBO Rep. 2021;22:e54046. doi: 10.15252/embr.202154046. PubMed DOI PMC

Uanschou C., Ronceret A., Von Harder M., De Muyt A., Vezon D., Pereira L., Chelysheva L., Kobayashi W., Kurumizaka H., Schlögelhofer P., et al. Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis. Plant Cell. 2013;25:4924–4940. doi: 10.1105/tpc.113.118521. PubMed DOI PMC

Poulsen H., Nilsson J., Damgaard C.K., Egebjerg J., Kjems J. CRM1 Mediates the Export of ADAR1 through a Nuclear Export Signal within the Z-DNA Binding Domain. Mol. Cell. Biol. 2001;21:7862–7871. doi: 10.1128/MCB.21.22.7862-7871.2001. PubMed DOI PMC

Strehblow A., Hallegger M., Jantsch M.F. Nucleocytoplasmic Distribution of Human RNA-Editing Enzyme ADAR1 Is Modulated by Double-Stranded RNA-Binding Domains, a Leucine-Rich Export Signal, and a Putative Dimerization Domain. Mol. Biol. Cell. 2002;13:3822–3835. doi: 10.1091/mbc.e02-03-0161. PubMed DOI PMC

Kim C. How Z-DNA/RNA Binding Proteins Shape Homeostasis, Inflammation, and Immunity. BMB Rep. 2020;53:453–457. doi: 10.5483/BMBRep.2020.53.9.141. PubMed DOI PMC

Gallo A., Vukic D., Michalík D., O’Connell M.A., Keegan L.P. ADAR RNA Editing in Human Disease; More to It than Meets the I. Hum. Genet. 2017;136:1265–1278. doi: 10.1007/s00439-017-1837-0. PubMed DOI

Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic Identification of Cell Cycle-Dependent Yeast Nucleocytoplasmic Shuttling Proteins by Prediction of Composite Motifs. Proc. Natl. Acad. Sci. USA. 2009;106:10171–10176. doi: 10.1073/pnas.0900604106. PubMed DOI PMC

Bartas M., Červeň J., Guziurová S., Slychko K., Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int. J. Mol. Sci. 2021;22:922. doi: 10.3390/ijms22020922. PubMed DOI PMC

Yan Y., Tao H., He J., Huang S.-Y. The HDOCK Server for Integrated Protein–Protein Docking. Nat. Protoc. 2020;15:1829–1852. doi: 10.1038/s41596-020-0312-x. PubMed DOI

Nichols P.J., Bevers S., Henen M., Kieft J.S., Vicens Q., Vögeli B. Recognition of Non-CpG Repeats in Alu and Ribosomal RNAs by the Z-RNA Binding Domain of ADAR1 Induces A-Z Junctions. Nat. Commun. 2021;12:793. doi: 10.1038/s41467-021-21039-0. PubMed DOI PMC

Kim D., Lee Y.-H., Hwang H.-Y., Kim K.K., Park H.-J. Z-DNA Binding Proteins as Targets for Structure-Based Virtual Screening. Curr. Drug Targets. 2010;11:335–344. doi: 10.2174/138945010790711905. PubMed DOI

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., Sidiropoulos K., Cook J., Gillespie M., Haw R., et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2020;48:D498–D503. doi: 10.1093/nar/gkz1031. PubMed DOI PMC

Ramsay E.P., Abascal-Palacios G., Daiß J.L., King H., Gouge J., Pilsl M., Beuron F., Morris E., Gunkel P., Engel C., et al. Structure of Human RNA Polymerase III. Nat. Commun. 2020;11:6409. doi: 10.1038/s41467-020-20262-5. PubMed DOI PMC

Ogunjimi B., Zhang S.-Y., Sørensen K.B., Skipper K.A., Carter-Timofte M., Kerner G., Luecke S., Prabakaran T., Cai Y., Meester J., et al. Inborn Errors in RNA Polymerase III Underlie Severe Varicella Zoster Virus Infections. J. Clin. Investig. 2017;127:3543–3556. doi: 10.1172/JCI92280. PubMed DOI PMC

Carter-Timofte M.E., Hansen A.F., Christiansen M., Paludan S.R., Mogensen T.H. Mutations in RNA Polymerase III Genes and Defective DNA Sensing in Adults with Varicella-Zoster Virus CNS Infection. Genes Immun. 2019;20:214–223. doi: 10.1038/s41435-018-0027-y. PubMed DOI

The Gene Ontology Consortium Gene Ontology Consortium: Going Forward. Nucleic Acids Res. 2015;43:D1049–D1056. doi: 10.1093/nar/gku1179. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Meng E.C., Pettersen E.F., Couch G.S., Huang C.C., Ferrin T.E. Tools for Integrated Sequence-Structure Analysis with UCSF Chimera. BMC Bioinform. 2006;7:339. doi: 10.1186/1471-2105-7-339. PubMed DOI PMC

Drozdzal P., Gilski M., Kierzek R., Lomozik L., Jaskolski M. Ultrahigh-Resolution Crystal Structures of Z-DNA in Complex with Mn2+ and Zn2+ Ions. Acta Cryst. D. 2013;69:1180–1190. doi: 10.1107/S0907444913007798. PubMed DOI

Popenda M., Milecki J., Adamiak R.W. High Salt Solution Structure of a Left-Handed RNA Double Helix. Nucleic Acids Res. 2004;32:4044–4054. doi: 10.1093/nar/gkh736. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...