Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35054954
PubMed Central
PMC8775963
DOI
10.3390/ijms23020768
PII: ijms23020768
Knihovny.cz E-zdroje
- Klíčová slova
- Z-DNA, Z-RNA, Zα domain, bioinformatics, protein binding,
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- interakční proteinové domény a motivy * MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- proteiny vázající RNA chemie metabolismus MeSH
- RNA chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Z-DNA chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- proteiny vázající RNA MeSH
- RNA MeSH
- Z-DNA MeSH
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
Zobrazit více v PubMed
Guiblet W.M., Cremona M.A., Harris R.S., Chen D., Eckert K.A., Chiaromonte F., Huang Y.-F., Makova K.D. Non-B DNA: A Major Contributor to Small- and Large-Scale Variation in Nucleotide Substitution Frequencies across the Genome. Nucleic Acids Res. 2021;49:1497–1516. doi: 10.1093/nar/gkaa1269. PubMed DOI PMC
Brázda V., Bartas M., Bowater R.P. Evolution of Diverse Strategies for Promoter Regulation. Trends Genet. 2021;37:730–744. doi: 10.1016/j.tig.2021.04.003. PubMed DOI
Lyons S.M., Kharel P., Akiyama Y., Ojha S., Dave D., Tsvetkov V., Merrick W., Ivanov P., Anderson P. EIF4G Has Intrinsic G-Quadruplex Binding Activity That Is Required for TiRNA Function. Nucleic Acids Res. 2020;48:6223–6233. doi: 10.1093/nar/gkaa336. PubMed DOI PMC
Mukherjee A.K., Sharma S., Chowdhury S. Non-Duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet. 2019;35:129–144. doi: 10.1016/j.tig.2018.11.001. PubMed DOI PMC
Hayward B.E., Usdin K. Mechanisms of Genome Instability in the Fragile X-Related Disorders. Genes. 2021;12:1633. doi: 10.3390/genes12101633. PubMed DOI PMC
Schaich M.A., Van Houten B. Searching for DNA Damage: Insights from Single Molecule Analysis. Front. Mol. Biosci. 2021;8:772877. doi: 10.3389/fmolb.2021.772877. PubMed DOI PMC
Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Zhao J., Bacolla A., Wang G., Vasquez K.M. Non-B DNA Structure-Induced Genetic Instability and Evolution. Cell. Mol. Life Sci. 2010;67:43–62. doi: 10.1007/s00018-009-0131-2. PubMed DOI PMC
Herbert A. Z-DNA and Z-RNA in Human Disease. Commun. Biol. 2019;2:7. doi: 10.1038/s42003-018-0237-x. PubMed DOI PMC
Roy R., Chakraborty P., Chatterjee A., Sarkar J. Comparative Review on Left-Handed Z-DNA. Front. Biosci. 2021;26:29–35. PubMed
Rajeswari M.R. DNA Triplex Structures in Neurodegenerative Disorder, Friedreich’s Ataxia. J. Biosci. 2012;37:519–532. doi: 10.1007/s12038-012-9219-1. PubMed DOI
Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC
Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC
Brázda V., Coufal J., Liao J.C.C., Arrowsmith C.H. Preferential Binding of IFI16 Protein to Cruciform Structure and Superhelical DNA. Biochem. Biophys. Res. Commun. 2012;422:716–720. doi: 10.1016/j.bbrc.2012.05.065. PubMed DOI
Schwartz T., Rould M.A., Lowenhaupt K., Herbert A., Rich A. Crystal Structure of the Zalpha Domain of the Human Editing Enzyme ADAR1 Bound to Left-Handed Z-DNA. Science. 1999;284:1841–1845. doi: 10.1126/science.284.5421.1841. PubMed DOI
Placido D., Brown B.A., Lowenhaupt K., Rich A., Athanasiadis A. A Left-Handed RNA Double Helix Bound by the Z α Domain of the RNA-Editing Enzyme ADAR1. Structure. 2007;15:395–404. doi: 10.1016/j.str.2007.03.001. PubMed DOI PMC
Ha S.C., Kim D., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. The Crystal Structure of the Second Z-DNA Binding Domain of Human DAI (ZBP1) in Complex with Z-DNA Reveals an Unusual Binding Mode to Z-DNA. Proc. Natl. Acad. Sci. USA. 2008;105:20671–20676. doi: 10.1073/pnas.0810463106. PubMed DOI PMC
Schwartz T., Behlke J., Lowenhaupt K., Heinemann U., Rich A. Structure of the DLM-1–Z-DNA Complex Reveals a Conserved Family of Z-DNA-Binding Proteins. Nat. Struct. Mol. Biol. 2001;8:761–765. doi: 10.1038/nsb0901-761. PubMed DOI
Kim D., Hur J., Park K., Bae S., Shin D., Ha S.C., Hwang H.-Y., Hohng S., Lee J.-H., Lee S., et al. Distinct Z-DNA Binding Mode of a PKR-like Protein Kinase Containing a Z-DNA Binding Domain (PKZ) Nucleic Acids Res. 2014;42:5937–5948. doi: 10.1093/nar/gku189. PubMed DOI PMC
de Rosa M., Zacarias S., Athanasiadis A. Structural Basis for Z-DNA Binding and Stabilization by the Zebrafish Z-DNA Dependent Protein Kinase PKZ. Nucleic Acids Res. 2013;41:9924–9933. doi: 10.1093/nar/gkt743. PubMed DOI PMC
Kuś K., Rakus K., Boutier M., Tsigkri T., Gabriel L., Vanderplasschen A., Athanasiadis A. The Structure of the Cyprinid Herpesvirus 3 ORF112-Zα·Z-DNA Complex Reveals a Mechanism of Nucleic Acids Recognition Conserved with E3L, a Poxvirus Inhibitor of Interferon Response. J. Biol. Chem. 2015;290:30713–30725. doi: 10.1074/jbc.M115.679407. PubMed DOI PMC
Ha S.C., Lokanath N.K., Van Quyen D., Wu C.A., Lowenhaupt K., Rich A., Kim Y.-G., Kim K.K. A Poxvirus Protein Forms a Complex with Left-Handed Z-DNA: Crystal Structure of a Yatapoxvirus Zα Bound to DNA. Proc. Natl. Acad. Sci. USA. 2004;101:14367–14372. doi: 10.1073/pnas.0405586101. PubMed DOI PMC
Nikpour N., Salavati R. The RNA Binding Activity of the First Identified Trypanosome Protein with Z-DNA-Binding Domains. Sci. Rep. 2019;9:5904. doi: 10.1038/s41598-019-42409-1. PubMed DOI PMC
Mitsui Y., Langridge R., Shortle B.E., Cantor C.R., Grant R.C., Kodama M., Wells R.D. Physical and Enzymatic Studies on Poly d(I–C).Poly d(I–C), an Unusual Double-Helical DNA. Nature. 1970;228:1166–1169. doi: 10.1038/2281166a0. PubMed DOI
Wang A.H.-J., Quigley G.J., Kolpak F.J., Crawford J.L., van Boom J.H., van der Marel G., Rich A. Molecular Structure of a Left-Handed Double Helical DNA Fragment at Atomic Resolution. Nature. 1979;282:680–686. doi: 10.1038/282680a0. PubMed DOI
Ha S.C., Lowenhaupt K., Rich A., Kim Y.-G., Kim K.K. Crystal Structure of a Junction between B-DNA and Z-DNA Reveals Two Extruded Bases. Nature. 2005;437:1183–1186. doi: 10.1038/nature04088. PubMed DOI
Zhang Y., Cui Y., An R., Liang X., Li Q., Wang H., Wang H., Fan Y., Dong P., Li J., et al. Topologically Constrained Formation of Stable Z-DNA from Normal Sequence under Physiological Conditions. J. Am. Chem. Soc. 2019;141:7758–7764. doi: 10.1021/jacs.8b13855. PubMed DOI
Renčiuk D., Kypr J., Vorlíčková M. CGG Repeats Associated with Fragile X Chromosome Form Left-Handed Z-DNA Structure. Biopolymers. 2011;95:174–181. doi: 10.1002/bip.21555. PubMed DOI
Bae S., Kim D., Kim K.K., Kim Y.-G., Hohng S. Intrinsic Z-DNA Is Stabilized by the Conformational Selection Mechanism of Z-DNA-Binding Proteins. J. Am. Chem. Soc. 2011;133:668–671. doi: 10.1021/ja107498y. PubMed DOI
Dumat B., Larsen A.F., Wilhelmsson L.M. Studying Z-DNA and B- to Z-DNA Transitions Using a Cytosine Analogue FRET-Pair. Nucleic Acids Res. 2016;44:e101. doi: 10.1093/nar/gkw114. PubMed DOI PMC
Beknazarov N., Jin S., Poptsova M. Deep Learning Approach for Predicting Functional Z-DNA Regions Using Omics Data. Sci. Rep. 2020;10:19134. doi: 10.1038/s41598-020-76203-1. PubMed DOI PMC
Champ P.C., Maurice S., Vargason J.M., Camp T., Ho P.S. Distributions of Z-DNA and Nuclear Factor I in Human Chromosome 22: A Model for Coupled Transcriptional Regulation. Nucleic Acids Res. 2004;32:6501–6510. doi: 10.1093/nar/gkh988. PubMed DOI PMC
Ho P.S., Mooers B.H. Z-DNA Crystallography. Biopolymers. 1997;14:65–90. doi: 10.1002/(SICI)1097-0282(1997)44:1<65::AID-BIP5>3.0.CO;2-Y. PubMed DOI
Herbert A. ALU Non-B-DNA Conformations, Flipons, Binary Codes and Evolution. R. Soc. Open Sci. 2020;7:200222. doi: 10.1098/rsos.200222. PubMed DOI PMC
Fleming A.M., Zhu J., Ding Y., Esders S., Burrows C.J. Oxidative Modification of Guanine in a Potential Z-DNA-Forming Sequence of a Gene Promoter Impacts Gene Expression. Chem. Res. Toxicol. 2019;32:899–909. doi: 10.1021/acs.chemrestox.9b00041. PubMed DOI PMC
Li H., Xiao J., Li J., Lu L., Feng S., Dröge P. Human Genomic Z-DNA Segments Probed by the Zα Domain of ADAR1. Nucleic Acids Res. 2009;37:2737–2746. doi: 10.1093/nar/gkp124. PubMed DOI PMC
Shin S.-I., Ham S., Park J., Seo S.H., Lim C.H., Jeon H., Huh J., Roh T.-Y. Z-DNA-Forming Sites Identified by ChIP-Seq Are Associated with Actively Transcribed Regions in the Human Genome. DNA Res. 2016;23:477–486. doi: 10.1093/dnares/dsw031. PubMed DOI PMC
Fogg J.M., Randall G.L., Pettitt B.M., Sumners D.W.L., Harris S.A., Zechiedrich L. Bullied No More: When and How DNA Shoves Proteins Around. Q. Rev. Biophys. 2012;45:257–299. doi: 10.1017/S0033583512000054. PubMed DOI PMC
Hall K., Cruz P., Tinoco I., Jovin T.M., van de Sande J.H. ‘Z-RNA’—A Left-Handed RNA Double Helix. Nature. 1984;311:584–586. doi: 10.1038/311584a0. PubMed DOI
Zhang T., Yin C., Boyd D.F., Quarato G., Ingram J.P., Shubina M., Ragan K.B., Ishizuka T., Crawford J.C., Tummers B., et al. Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell. 2020;180:1115–1129.e13. doi: 10.1016/j.cell.2020.02.050. PubMed DOI PMC
Cer R.Z., Donohue D.E., Mudunuri U.S., Temiz N.A., Loss M.A., Starner N.J., Halusa G.N., Volfovsky N., Yi M., Luke B.T., et al. Non-B DB v2.0: A Database of Predicted Non-B DNA-Forming Motifs and Its Associated Tools. Nucleic Acids Res. 2013;41:D94–D100. doi: 10.1093/nar/gks955. PubMed DOI PMC
Herbert A., Lowenhaupt K., Spitzner J., Rich A. Double-Stranded RNA Adenosine Deaminase Binds Z-DNA in Vitro. Nucleic Acids Symp. Ser. 1995;33:16–19. PubMed
Chiang D.C., Li Y., Ng S.K. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front. Immunol. 2021;11:3779. doi: 10.3389/fimmu.2020.625504. PubMed DOI PMC
Lee A.-R., Kim N.-H., Seo Y.-J., Choi S.-R., Lee J.-H. Thermodynamic Model for B-Z Transition of DNA Induced by Z-DNA Binding Proteins. Molecules. 2018;23:2748. doi: 10.3390/molecules23112748. PubMed DOI PMC
Wang H., Wang G., Zhang L., Zhang J., Zhang J., Wang Q., Billiar T.R. ADAR1 Suppresses the Activation of Cytosolic RNA-Sensing Signaling Pathways to Protect the Liver from Ischemia/Reperfusion Injury. Sci. Rep. 2016;6:20248. doi: 10.1038/srep20248. PubMed DOI PMC
Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T., Honda K., et al. DAI (DLM-1/ZBP1) Is a Cytosolic DNA Sensor and an Activator of Innate Immune Response. Nature. 2007;448:501–505. doi: 10.1038/nature06013. PubMed DOI
Kuriakose T., Kanneganti T.-D. ZBP1: Innate Sensor Regulating Cell Death and Inflammation. Trends Immunol. 2018;39:123–134. doi: 10.1016/j.it.2017.11.002. PubMed DOI PMC
Fischer S.E.J., Ruvkun G. Caenorhabditis Elegans ADAR Editing and the ERI-6/7/MOV10 RNAi Pathway Silence Endogenous Viral Elements and LTR Retrotransposons. Proc. Natl. Acad. Sci. USA. 2020;117:5987–5996. doi: 10.1073/pnas.1919028117. PubMed DOI PMC
Kahmann J.D., Wecking D.A., Putter V., Lowenhaupt K., Kim Y.-G., Schmieder P., Oschkinat H., Rich A., Schade M. The Solution Structure of the N-Terminal Domain of E3L Shows a Tyrosine Conformation That May Explain Its Reduced Affinity to Z-DNA in Vitro. Proc. Natl. Acad. Sci. USA. 2004;101:2712–2717. doi: 10.1073/pnas.0308612100. PubMed DOI PMC
Thakur M., Seo E.J., Dever T.E. Variola Virus E3L Zα Domain, but Not Its Z-DNA Binding Activity, Is Required for PKR Inhibition. RNA. 2014;20:214–227. doi: 10.1261/rna.042341.113. PubMed DOI PMC
Kim Y.-G., Muralinath M., Brandt T., Pearcy M., Hauns K., Lowenhaupt K., Jacobs B.L., Rich A. A Role for Z-DNA Binding in Vaccinia Virus Pathogenesis. Proc. Natl. Acad. Sci. USA. 2003;100:6974–6979. doi: 10.1073/pnas.0431131100. PubMed DOI PMC
Deigendesch N., Koch-Nolte F., Rothenburg S. ZBP1 Subcellular Localization and Association with Stress Granules Is Controlled by Its Z-DNA Binding Domains. Nucleic Acids Res. 2006;34:5007–5020. doi: 10.1093/nar/gkl575. PubMed DOI PMC
Ng S.K., Weissbach R., Ronson G.E., Scadden A.D.J. Proteins That Contain a Functional Z-DNA-Binding Domain Localize to Cytoplasmic Stress Granules. Nucleic Acids Res. 2013;41:9786–9799. doi: 10.1093/nar/gkt750. PubMed DOI PMC
Taghavi N., Samuel C.E. RNA-Dependent Protein Kinase PKR and the Z-DNA Binding Orthologue PKZ Differ in Their Capacity to Mediate Initiation Factor EIF2α-Dependent Inhibition of Protein Synthesis and Virus-Induced Stress Granule Formation. Virology. 2013;443:48–58. doi: 10.1016/j.virol.2013.04.020. PubMed DOI PMC
Licht K., Jantsch M.F. The Other Face of an Editor: ADAR1 Functions in Editing-Independent Ways. Bioessays. 2017;39:1700129. doi: 10.1002/bies.201700129. PubMed DOI
Herbert A., Schade M., Lowenhaupt K., Alfken J., Schwartz T., Shlyakhtenko L.S., Lyubchenko Y.L., Rich A. The Z α Domain from Human ADAR1 Binds to the Z-DNA Conformer of Many Different Sequences. Nucleic Acids Res. 1998;26:3486–3493. doi: 10.1093/nar/26.15.3486. PubMed DOI PMC
Kim U., Wang Y., Sanford T., Zeng Y., Nishikura K. Molecular Cloning of CDNA for Double-Stranded RNA Adenosine Deaminase, a Candidate Enzyme for Nuclear RNA Editing. Proc. Natl. Acad. Sci. USA. 1994;91:11457–11461. doi: 10.1073/pnas.91.24.11457. PubMed DOI PMC
Ha S.C., Choi J., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. The Structures of Non-CG-Repeat Z-DNAs Co-Crystallized with the Z-DNA-Binding Domain, HZα ADAR1. Nucleic Acids Res. 2009;37:629–637. doi: 10.1093/nar/gkn976. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Athanasiadis A., Placido D., Maas S., Brown B.A., Lowenhaupt K., Rich A. The Crystal Structure of the Z β Domain of the RNA-Editing Enzyme ADAR1 Reveals Distinct Conserved Surfaces among Z-Domains. J. Mol. Biol. 2005;351:496–507. doi: 10.1016/j.jmb.2005.06.028. PubMed DOI
Schade M., Turner C.J., Kühne R., Schmieder P., Lowenhaupt K., Herbert A., Rich A., Oschkinat H. The Solution Structure of the Zα Domain of the Human RNA Editing Enzyme ADAR1 Reveals a Prepositioned Binding Surface for Z-DNA. Proc. Natl. Acad. Sci. USA. 1999;96:12465–12470. doi: 10.1073/pnas.96.22.12465. PubMed DOI PMC
Kim K., Khayrutdinov B.I., Lee C.-K., Cheong H.-K., Kang S.W., Park H., Lee S., Kim Y.-G., Jee J., Rich A., et al. Solution Structure of the Z β Domain of Human DNA-Dependent Activator of IFN-Regulatory Factors and Its Binding Modes to B- and Z-DNAs. Proc. Natl. Acad. Sci. USA. 2011;108:6921–6926. doi: 10.1073/pnas.1014898107. PubMed DOI PMC
Park C., Zheng X., Park C.Y., Kim J., Lee S.K., Won H., Choi J., Kim Y.-G., Choi H.-J. Dual Conformational Recognition by Z-DNA Binding Protein Is Important for the B–Z Transition Process. Nucleic Acids Res. 2020;48:12957–12971. doi: 10.1093/nar/gkaa1115. PubMed DOI PMC
Krissinel E., Henrick K. Secondary-Structure Matching (SSM), a New Tool for Fast Protein Structure Alignment in Three Dimensions. Acta Cryst. D Biol. Cryst. 2004;60:2256–2268. doi: 10.1107/S0907444904026460. PubMed DOI
Leu J.Y., Chua P.R., Roeder G.S. The Meiosis-Specific Hop2 Protein of S. Cerevisiae Ensures Synapsis between Homologous Chromosomes. Cell. 1998;94:375–386. doi: 10.1016/S0092-8674(00)81480-4. PubMed DOI
Chan Y.-L., Brown M.S., Qin D., Handa N., Bishop D.K. The Third Exon of the Budding Yeast Meiotic Recombination Gene HOP2 Is Required for Calcium-Dependent and Recombinase Dmc1-Specific Stimulation of Homologous Strand Assimilation. J. Biol. Chem. 2014;289:18076–18086. doi: 10.1074/jbc.M114.558601. PubMed DOI PMC
Mizuno N., Voordouw G., Miki K., Sarai A., Higuchi Y. Crystal Structure of Dissimilatory Sulfite Reductase D (DsrD) Protein—Possible Interaction with B- and Z-DNA by Its Winged-Helix Motif. Structure. 2003;11:1133–1140. doi: 10.1016/S0969-2126(03)00156-4. PubMed DOI
Hung K.-W., Tsai J.-Y., Juan T.-H., Hsu Y.-L., Hsiao C.-D., Huang T.-H. Crystal Structure of the Klebsiella Pneumoniae NFeoB/FeoC Complex and Roles of FeoC in Regulation of Fe2+ Transport by the Bacterial Feo System. J. Bacteriol. 2012;194:6518–6526. doi: 10.1128/JB.01228-12. PubMed DOI PMC
Aramini J.M., Rossi P., Cort J.R., Ma L.-C., Xiao R., Acton T.B., Montelione G.T. Solution NMR Structure of the Plasmid-Encoded Fimbriae Regulatory Protein PefI from Salmonella Enterica Serovar Typhimurium. Proteins Struct. Funct. Bioinform. 2011;79:335–339. doi: 10.1002/prot.22869. PubMed DOI PMC
Sleeth K.M., Sørensen C.S., Issaeva N., Dziegielewski J., Bartek J., Helleday T. RPA Mediates Recombination Repair during Replication Stress and Is Displaced from DNA by Checkpoint Signalling in Human Cells. J. Mol. Biol. 2007;373:38–47. doi: 10.1016/j.jmb.2007.07.068. PubMed DOI
Grudic A., Jul-Larsen A., Haring S.J., Wold M.S., Lønning P.E., Bjerkvig R., Bøe S.O. Replication Protein A Prevents Accumulation of Single-Stranded Telomeric DNA in Cells That Use Alternative Lengthening of Telomeres. Nucleic Acids Res. 2007;35:7267–7278. doi: 10.1093/nar/gkm738. PubMed DOI PMC
Erdile L.F., Wold M.S., Kelly T.J. The Primary Structure of the 32-KDa Subunit of Human Replication Protein A. J. Biol. Chem. 1990;265:3177–3182. doi: 10.1016/S0021-9258(19)39750-9. PubMed DOI
Maestroni L., Audry J., Luciano P., Coulon S., Géli V., Corda Y. RPA and Pif1 Cooperate to Remove G-Rich Structures at Both Leading and Lagging Strand. Cell Stress. 2020;4:48–63. doi: 10.15698/cst2020.03.214. PubMed DOI PMC
Seol J.H., Feldman R.M., Zachariae W., Shevchenko A., Correll C.C., Lyapina S., Chi Y., Galova M., Claypool J., Sandmeyer S., et al. Cdc53/Cullin and the Essential Hrt1 RING-H2 Subunit of SCF Define a Ubiquitin Ligase Module That Activates the E2 Enzyme Cdc34. Genes Dev. 1999;13:1614–1626. doi: 10.1101/gad.13.12.1614. PubMed DOI PMC
Sweeney M.A., Iakova P., Maneix L., Shih F.-Y., Cho H.E., Sahin E., Catic A. The Ubiquitin Ligase Cullin-1 Associates with Chromatin and Regulates Transcription of Specific c-MYC Target Genes. Sci. Rep. 2020;10:13942. doi: 10.1038/s41598-020-70610-0. PubMed DOI PMC
Barford D. Structural Interconversions of the Anaphase-Promoting Complex/Cyclosome (APC/C) Regulate Cell Cycle Transitions. Curr. Opin. Struct. Biol. 2020;61:86–97. doi: 10.1016/j.sbi.2019.11.010. PubMed DOI
Skibbens R.V. Buck the Establishment: Reinventing Sister Chromatid Cohesion. Trends Cell Biol. 2010;20:507–513. doi: 10.1016/j.tcb.2010.06.003. PubMed DOI
Zachariae W., Shevchenko A., Andrews P.D., Ciosk R., Galova M., Stark M.J., Mann M., Nasmyth K. Mass Spectrometric Analysis of the Anaphase-Promoting Complex from Yeast: Identification of a Subunit Related to Cullins. Science. 1998;279:1216–1219. doi: 10.1126/science.279.5354.1216. PubMed DOI
Chiu Y.-H., MacMillan J.B., Chen Z.J. RNA Polymerase III Detects Cytosolic DNA and Induces Type-I Interferons Through the RIG-I Pathway. Cell. 2009;138:576–591. doi: 10.1016/j.cell.2009.06.015. PubMed DOI PMC
Yan J., Beattie T.R., Rojas A.L., Schermerhorn K., Gristwood T., Trinidad J.C., Albers S.V., Roversi P., Gardner A.F., Abrescia N.G.A., et al. Identification and Characterization of a Heterotrimeric Archaeal DNA Polymerase Holoenzyme. Nat. Commun. 2017;8:15075. doi: 10.1038/ncomms15075. PubMed DOI PMC
Enomoto R., Kinebuchi T., Sato M., Yagi H., Kurumizaka H., Yokoyama S. Stimulation of DNA Strand Exchange by the Human TBPIP/Hop2-Mnd1 Complex. J. Biol. Chem. 2006;281:5575–5581. doi: 10.1074/jbc.M506506200. PubMed DOI
Zangen D., Kaufman Y., Zeligson S., Perlberg S., Fridman H., Kanaan M., Abdulhadi-Atwan M., Abu Libdeh A., Gussow A., Kisslov I., et al. XX Ovarian Dysgenesis Is Caused by a PSMC3IP/HOP2 Mutation That Abolishes Coactivation of Estrogen-Driven Transcription. Am. J. Hum. Genet. 2011;89:572–579. doi: 10.1016/j.ajhg.2011.09.006. PubMed DOI PMC
Rudnicka A., Yamauchi Y. Ubiquitin in Influenza Virus Entry and Innate Immunity. Viruses. 2016;8:293. doi: 10.3390/v8100293. PubMed DOI PMC
Carter-Timofte M.E., Hansen A.F., Mardahl M., Fribourg S., Rapaport F., Zhang S.-Y., Casanova J.-L., Paludan S.R., Christiansen M., Larsen C.S., et al. Varicella-Zoster Virus CNS Vasculitis and RNA Polymerase III Gene Mutation in Identical Twins. Neurol.-Neuroimmunol. Neuroinflamm. 2018;5:e500. doi: 10.1212/NXI.0000000000000500. PubMed DOI PMC
Van Quyen D., Ha S.C., Lowenhaupt K., Rich A., Kim K.K., Kim Y.-G. Characterization of DNA-Binding Activity of Zα Domains from Poxviruses and the Importance of the β-Wing Regions in Converting B-DNA to Z-DNA. Nucleic Acids Res. 2007;35:7714–7720. doi: 10.1093/nar/gkm748. PubMed DOI PMC
Chemes L.B., de Prat-Gay G., Sánchez I.E. Convergent Evolution and Mimicry of Protein Linear Motifs in Host-Pathogen Interactions. Curr. Opin. Struct. Biol. 2015;32:91–101. doi: 10.1016/j.sbi.2015.03.004. PubMed DOI
Tomii K., Sawada Y., Honda S. Convergent Evolution in Structural Elements of Proteins Investigated Using Cross Profile Analysis. BMC Bioinform. 2012;13:11. doi: 10.1186/1471-2105-13-11. PubMed DOI PMC
Brázda V., Červeň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules. 2018;23:2341. doi: 10.3390/molecules23092341. PubMed DOI PMC
Bartas M., Bažantová P., Brázda V., Liao J.C., Červeň J., Pečinka P. Identification of Distinct Amino Acid Composition of Human Cruciform Binding Proteins. Mol. Biol. 2019;53:97–106. doi: 10.1134/S0026893319010023. PubMed DOI
Sousounis K., Haney C.E., Cao J., Sunchu B., Tsonis P.A. Conservation of the Three-Dimensional Structure in Non-Homologous or Unrelated Proteins. Hum. Genom. 2012;6:10. doi: 10.1186/1479-7364-6-10. PubMed DOI PMC
Zhang Y., Skolnick J. TM-Align: A Protein Structure Alignment Algorithm Based on the TM-Score. Nucleic Acids Res. 2005;33:2302–2309. doi: 10.1093/nar/gki524. PubMed DOI PMC
Perrakis A., Sixma T.K. AI Revolutions in Biology. EMBO Rep. 2021;22:e54046. doi: 10.15252/embr.202154046. PubMed DOI PMC
Uanschou C., Ronceret A., Von Harder M., De Muyt A., Vezon D., Pereira L., Chelysheva L., Kobayashi W., Kurumizaka H., Schlögelhofer P., et al. Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis. Plant Cell. 2013;25:4924–4940. doi: 10.1105/tpc.113.118521. PubMed DOI PMC
Poulsen H., Nilsson J., Damgaard C.K., Egebjerg J., Kjems J. CRM1 Mediates the Export of ADAR1 through a Nuclear Export Signal within the Z-DNA Binding Domain. Mol. Cell. Biol. 2001;21:7862–7871. doi: 10.1128/MCB.21.22.7862-7871.2001. PubMed DOI PMC
Strehblow A., Hallegger M., Jantsch M.F. Nucleocytoplasmic Distribution of Human RNA-Editing Enzyme ADAR1 Is Modulated by Double-Stranded RNA-Binding Domains, a Leucine-Rich Export Signal, and a Putative Dimerization Domain. Mol. Biol. Cell. 2002;13:3822–3835. doi: 10.1091/mbc.e02-03-0161. PubMed DOI PMC
Kim C. How Z-DNA/RNA Binding Proteins Shape Homeostasis, Inflammation, and Immunity. BMB Rep. 2020;53:453–457. doi: 10.5483/BMBRep.2020.53.9.141. PubMed DOI PMC
Gallo A., Vukic D., Michalík D., O’Connell M.A., Keegan L.P. ADAR RNA Editing in Human Disease; More to It than Meets the I. Hum. Genet. 2017;136:1265–1278. doi: 10.1007/s00439-017-1837-0. PubMed DOI
Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic Identification of Cell Cycle-Dependent Yeast Nucleocytoplasmic Shuttling Proteins by Prediction of Composite Motifs. Proc. Natl. Acad. Sci. USA. 2009;106:10171–10176. doi: 10.1073/pnas.0900604106. PubMed DOI PMC
Bartas M., Červeň J., Guziurová S., Slychko K., Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int. J. Mol. Sci. 2021;22:922. doi: 10.3390/ijms22020922. PubMed DOI PMC
Yan Y., Tao H., He J., Huang S.-Y. The HDOCK Server for Integrated Protein–Protein Docking. Nat. Protoc. 2020;15:1829–1852. doi: 10.1038/s41596-020-0312-x. PubMed DOI
Nichols P.J., Bevers S., Henen M., Kieft J.S., Vicens Q., Vögeli B. Recognition of Non-CpG Repeats in Alu and Ribosomal RNAs by the Z-RNA Binding Domain of ADAR1 Induces A-Z Junctions. Nat. Commun. 2021;12:793. doi: 10.1038/s41467-021-21039-0. PubMed DOI PMC
Kim D., Lee Y.-H., Hwang H.-Y., Kim K.K., Park H.-J. Z-DNA Binding Proteins as Targets for Structure-Based Virtual Screening. Curr. Drug Targets. 2010;11:335–344. doi: 10.2174/138945010790711905. PubMed DOI
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., Sidiropoulos K., Cook J., Gillespie M., Haw R., et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2020;48:D498–D503. doi: 10.1093/nar/gkz1031. PubMed DOI PMC
Ramsay E.P., Abascal-Palacios G., Daiß J.L., King H., Gouge J., Pilsl M., Beuron F., Morris E., Gunkel P., Engel C., et al. Structure of Human RNA Polymerase III. Nat. Commun. 2020;11:6409. doi: 10.1038/s41467-020-20262-5. PubMed DOI PMC
Ogunjimi B., Zhang S.-Y., Sørensen K.B., Skipper K.A., Carter-Timofte M., Kerner G., Luecke S., Prabakaran T., Cai Y., Meester J., et al. Inborn Errors in RNA Polymerase III Underlie Severe Varicella Zoster Virus Infections. J. Clin. Investig. 2017;127:3543–3556. doi: 10.1172/JCI92280. PubMed DOI PMC
Carter-Timofte M.E., Hansen A.F., Christiansen M., Paludan S.R., Mogensen T.H. Mutations in RNA Polymerase III Genes and Defective DNA Sensing in Adults with Varicella-Zoster Virus CNS Infection. Genes Immun. 2019;20:214–223. doi: 10.1038/s41435-018-0027-y. PubMed DOI
The Gene Ontology Consortium Gene Ontology Consortium: Going Forward. Nucleic Acids Res. 2015;43:D1049–D1056. doi: 10.1093/nar/gku1179. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Meng E.C., Pettersen E.F., Couch G.S., Huang C.C., Ferrin T.E. Tools for Integrated Sequence-Structure Analysis with UCSF Chimera. BMC Bioinform. 2006;7:339. doi: 10.1186/1471-2105-7-339. PubMed DOI PMC
Drozdzal P., Gilski M., Kierzek R., Lomozik L., Jaskolski M. Ultrahigh-Resolution Crystal Structures of Z-DNA in Complex with Mn2+ and Zn2+ Ions. Acta Cryst. D. 2013;69:1180–1190. doi: 10.1107/S0907444913007798. PubMed DOI
Popenda M., Milecki J., Adamiak R.W. High Salt Solution Structure of a Left-Handed RNA Double Helix. Nucleic Acids Res. 2004;32:4044–4054. doi: 10.1093/nar/gkh736. PubMed DOI PMC
Impacts of Molecular Structure on Nucleic Acid-Protein Interactions