Extensive Bioinformatics Analyses Reveal a Phylogenetically Conserved Winged Helix (WH) Domain (Zτ) of Topoisomerase IIα, Elucidating Its Very High Affinity for Left-Handed Z-DNA and Suggesting Novel Putative Functions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS10/PřF/2022; SGS05/PřF/2023
University of Ostrava
Project Grant
Manfred Eigen Foundation
PubMed
37445918
PubMed Central
PMC10341724
DOI
10.3390/ijms241310740
PII: ijms241310740
Knihovny.cz E-zdroje
- Klíčová slova
- GTP, Z-DNA, bioinformatics, topoII, topoisomerase IIα,
- MeSH
- adenosindeaminasa metabolismus MeSH
- B-DNA * MeSH
- DNA-topoisomerasy typu II genetika metabolismus MeSH
- DNA chemie MeSH
- guanosintrifosfát MeSH
- lidé MeSH
- simulace molekulového dockingu MeSH
- Z-DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosindeaminasa MeSH
- B-DNA * MeSH
- DNA-topoisomerasy typu II MeSH
- DNA MeSH
- guanosintrifosfát MeSH
- Z-DNA * MeSH
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.
Zobrazit více v PubMed
Wang J.C. Untangling the Double Helix: DNA Entanglement and the Action of the DNA Topoisomerases. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2009.
Hanke A., Ziraldo R., Levene S.D. DNA-Topology Simplification by Topoisomerases. Molecules. 2021;26:3375. doi: 10.3390/molecules26113375. PubMed DOI PMC
Pommier Y., Nussenzweig A., Takeda S., Austin C. Human Topoisomerases and Their Roles in Genome Stability and Organization. Nat. Rev. Mol. Cell Biol. 2022;23:407–427. doi: 10.1038/s41580-022-00452-3. PubMed DOI PMC
Vidmar V., Vayssières M., Lamour V. What’s on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int. J. Mol. Sci. 2023;24:3986. doi: 10.3390/ijms24043986. PubMed DOI PMC
Neidle S., Sanderson M. Principles of Nucleic Acid Structure. 2nd ed. Academic Press; Cambridge, MA, USA: 2021.
Du Y., Zhou X. Targeting Non-B-Form DNA in Living Cells. Chem. Rec. 2013;13:371–384. doi: 10.1002/tcr.201300005. PubMed DOI
Pohl F.M., Jovin T.M. Salt-Induced Co-Operative Conformational Change of a Synthetic DNA: Equilibrium and Kinetic Studies with Poly(dG-dC) J. Mol. Biol. 1972;67:375–396. doi: 10.1016/0022-2836(72)90457-3. PubMed DOI
Jovin T.M. The Origin of Left-Handed Poly[d(G-C)] In: KIm K.K., Subramani V.K., editors. Z-DNA: Methods and Protocols. Springer; New York, NY, USA: 2023. pp. 1–32. PubMed DOI
Wang A.H.-J., Quigley G.J., Kolpak F.J., Crawford J.L., van Boom J.H., van der Marel G., Rich A. Molecular Structure of a Left-Handed Double Helical DNA Fragment at Atomic Resolution. Nature. 1979;282:680–686. doi: 10.1038/282680a0. PubMed DOI
Drew H., Takano T., Tanaka S., Itakura K., Dickerson R.E. High-Salt d(CpGpCpG), a Left-Handed Z′ DNA Double Helix. Nature. 1980;286:567–573. doi: 10.1038/286567a0. PubMed DOI
Kim D., Subramani V.K., Park S., Lee J.-H., Kim K.K. Z-DNA. In: Sugimoto N., editor. Handbook of Chemical Biology of Nucleic Acids. Springer Nature; Singapore: 2022. pp. 1–29.
Krall J.B., Nichols P.J., Henen M.A., Vicens Q., Vögeli B. Structure and Formation of Z-DNA and Z-RNA. Molecules. 2023;28:843. doi: 10.3390/molecules28020843. PubMed DOI PMC
KIm K.K., Subramani V.K., editors. Z-DNA: Methods and Protocols. Springer; New York, NY, USA: 2023. DOI
Herbert A. Z-DNA and Z-RNA in Human Disease. Commun. Biol. 2019;2:7. doi: 10.1038/s42003-018-0237-x. PubMed DOI PMC
Ravichandran S., Subramani V.K., Kim K.K. Z-DNA in the Genome: From Structure to Disease. Biophys. Rev. 2019;11:383–387. doi: 10.1007/s12551-019-00534-1. PubMed DOI PMC
Kim C. How Z-DNA/RNA Binding Proteins Shape Homeostasis, Inflammation, and Immunity. BMB Rep. 2020;53:453–457. doi: 10.5483/BMBRep.2020.53.9.141. PubMed DOI PMC
Herbert A. The Simple Biology of Flipons and Condensates Enhances the Evolution of Complexity. Molecules. 2021;26:4881. doi: 10.3390/molecules26164881. PubMed DOI PMC
Herbert A. Z-DNA: Methods and Protocols. Springer; New York, NY, USA: 2023. Z-DNA and Z-RNA: Methods—Past and Future; pp. 295–329. PubMed DOI
Nichols P.J., Krall J.B., Henen M.A., Vögeli B., Vicens Q. Z-RNA Biology: A Central Role in the Innate Immune Response? RNA. 2023;29:273–281. doi: 10.1261/rna.079429.122. PubMed DOI PMC
Herbert A., Alfken J., Kim Y.-G., Mian I.S., Nishikura K., Rich A. A Z-DNA Binding Domain Present in the Human Editing Enzyme, Double-Stranded RNA Adenosine Deaminase. Proc. Natl. Acad. Sci. USA. 1997;94:8421–8426. doi: 10.1073/pnas.94.16.8421. PubMed DOI PMC
Herbert A., Schade M., Lowenhaupt K., Alfken J., Schwartz T., Shlyakhtenko L.S., Lyubchenko Y.L., Rich A. The Zα Domain from Human ADAR1 Binds to the Z-DNA Conformer of Many Different Sequences. Nucleic Acids Res. 1998;26:3486–3493. doi: 10.1093/nar/26.15.3486. PubMed DOI PMC
Zhang T., Yin C., Fedorov A., Qiao L., Bao H., Beknazarov N., Wang S., Gautam A., Williams R.M., Crawford J.C. ADAR1 Masks the Cancer Immunotherapeutic Promise of ZBP1-Driven Necroptosis. Nature. 2022;606:594–602. doi: 10.1038/s41586-022-04753-7. PubMed DOI PMC
Schwartz T., Rould M.A., Lowenhaupt K., Herbert A., Rich A. Crystal Structure of the Zα Domain of the Human Editing Enzyme ADAR1 Bound to Left-Handed Z-DNA. Science. 1999;284:1841–1845. doi: 10.1126/science.284.5421.1841. PubMed DOI
Chiang D.C., Li Y., Ng S.K. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front. Immunol. 2021;11:3779. doi: 10.3389/fimmu.2020.625504. PubMed DOI PMC
Meng Y., Wang G., He H., Lau K.H., Hurt A., Bixler B.J., Parham A., Jin S.-G., Xu X., Vasquez K.M. Z-DNA Is Remodelled by ZBTB43 in Prospermatogonia to Safeguard the Germline Genome and Epigenome. Nat. Cell Biol. 2022;24:1141–1153. doi: 10.1038/s41556-022-00941-9. PubMed DOI PMC
Bartas M., Slychko K., Brázda V., Červeň J., Beaudoin C.A., Blundell T.L., Pečinka P. Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain. Int. J. Mol. Sci. 2022;23:768. doi: 10.3390/ijms23020768. PubMed DOI PMC
Enomoto R., Kinebuchi T., Sato M., Yagi H., Kurumizaka H., Yokoyama S. Stimulation of DNA Strand Exchange by the Human TBPIP/Hop2-Mnd1 Complex. J. Biol. Chem. 2006;281:5575–5581. doi: 10.1074/jbc.M506506200. PubMed DOI
EMBL SMART Z-Alpha. [(accessed on 10 February 2023)]. Available online: http://smart.embl-heidelberg.de/smart/selective.cgi?domains=Zalpha&terms=&taxon_text=&input=Architecture+query.
Arndt-Jovin D.J., Udvardy A., Garner M.M., Ritter S., Jovin T.M. Z-DNA Binding and Inhibition by GTP of Drosophila Topoisomerase II. Biochemistry. 1993;32:4862–4872. doi: 10.1021/bi00069a023. PubMed DOI
McKie S.J., Neuman K.C., Maxwell A. DNA Topoisomerases: Advances in Understanding of Cellular Roles and Multi-Protein Complexes via Structure-Function Analysis. BioEssays. 2021;43:2000286. doi: 10.1002/bies.202000286. PubMed DOI PMC
Howard M.T., Lee M.P., Hsieh T., Griffith J.D. Drosophila Topoisomerase II-DNA Interactions Are Affected by DNA Structure. J. Mol. Biol. 1991;217:53–62. doi: 10.1016/0022-2836(91)90610-I. PubMed DOI
Bigman L.S., Greenblatt H.M., Levy Y. What Are the Molecular Requirements for Protein Sliding along DNA? J. Phys. Chem. B. 2021;125:3119–3131. doi: 10.1021/acs.jpcb.1c00757. PubMed DOI PMC
Glikin G.C., Jovin T.M., Arndt-Jovin D.J. Interactions of Drosophilla DNA Topoisomerase II with Left-Handed Z-DNA in Supercoiled Minicircles. Nucleic Acids Res. 1991;19:7139–7144. doi: 10.1093/nar/19.25.7139. PubMed DOI PMC
Bechert T., Diekmann S., Arndt-Jovin D.J. Human 170 KDa and 180 KDa Topoisomerases II Bind Preferentially to Curved and Left-Handed Linear DNA. J. Biomol. Struct. 1994;12:605–623. doi: 10.1080/07391102.1994.10508762. PubMed DOI
Hirose S., Tabuchi H., Yoshinaga K. GTP Induces Knotting, Catenation, and Relaxation of DNA by Stoichiometric Amounts of DNA Topoisomerase II from Bombyx Mori and HeLa Cells. J. Biol. Chem. 1988;263:3805–3810. doi: 10.1016/S0021-9258(18)68996-3. PubMed DOI
Bollimpelli V.S., Dholaniya P.S., Kondapi A.K. Topoisomerase IIβ and Its Role in Different Biological Contexts. Arch. Biochem. Biophys. 2017;633:78–84. doi: 10.1016/j.abb.2017.06.021. PubMed DOI
Deweese J.E., Osheroff M.A., Osheroff N. DNA Topology and Topoisomerases: Teaching a “Knotty” Subject. Biochem. Mol. Biol. Educ. 2009;37:2–10. doi: 10.1002/bmb.20244. PubMed DOI PMC
Seol Y., Neuman K.C. The Dynamic Interplay between DNA Topoisomerases and DNA Topology. Biophys. Rev. 2016;8:101–111. doi: 10.1007/s12551-016-0240-8. PubMed DOI PMC
Michieletto D., Fosado Y.A.G., Melas E., Baiesi M., Tubiana L., Orlandini E. Dynamic and Facilitated Binding of Topoisomerase Accelerates Topological Relaxation. Nucleic Acids Res. 2022;50:4659–4668. doi: 10.1093/nar/gkac260. PubMed DOI PMC
Antoniou-Kourounioti M., Mimmack M.L., Porter A.C., Farr C.J. The Impact of the C-Terminal Region on the Interaction of Topoisomerase II Alpha with Mitotic Chromatin. Int. J. Mol. Sci. 2019;20:1238. doi: 10.3390/ijms20051238. PubMed DOI PMC
Hoang K.G., Menzie R.A., Rhoades J.H., Fief C.A., Deweese J.E. Reviewing the Modification, Interactions, and Regulation of the C-Terminal Domain of Topoisomerase IIα as a Prospect for Future Therapeutic Targeting. EC Pharmacol. Toxicol. 2020;8:27–43.
Hirsch J., Klostermeier D. What Makes a Type IIA Topoisomerase a Gyrase or a Topo IV? Nucleic Acids Res. 2021;49:6027–6042. doi: 10.1093/nar/gkab270. PubMed DOI PMC
Roca J. Topoisomerase II: A Fitted Mechanism for the Chromatin Landscape. Nucleic Acids Res. 2009;37:721–730. doi: 10.1093/nar/gkn994. PubMed DOI PMC
Wendorff T.J., Schmidt B.H., Heslop P., Austin C.A., Berger J.M. The Structure of DNA-Bound Human Topoisomerase II Alpha: Conformational Mechanisms for Coordinating Inter-Subunit Interactions with DNA Cleavage. J. Mol. Biol. 2012;424:109–124. doi: 10.1016/j.jmb.2012.07.014. PubMed DOI PMC
Chen S.-F., Huang N.-L., Lin J.-H., Wu C.-C., Wang Y.-R., Yu Y.-J., Gilson M.K., Chan N.-L. Structural Insights into the Gating of DNA Passage by the Topoisomerase II DNA-Gate. Nat. Commun. 2018;9:3085. doi: 10.1038/s41467-018-05406-y. PubMed DOI PMC
Lee J.H., Berger J.M. Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes. 2019;10:859. doi: 10.3390/genes10110859. PubMed DOI PMC
Ziraldo R., Hanke A., Levene S.D. Kinetic Pathways of Topology Simplification by Type-II Topoisomerases in Knotted Supercoiled DNA. Nucleic Acids Res. 2019;47:69–84. doi: 10.1093/nar/gky1174. PubMed DOI PMC
Vanden Broeck A., Lotz C., Drillien R., Haas L., Bedez C., Lamour V. Structural Basis for Allosteric Regulation of Human Topoisomerase IIα. Nat. Commun. 2021;12:2962. doi: 10.1038/s41467-021-23136-6. PubMed DOI PMC
Schmidt B.H., Osheroff N., Berger J.M. Structure of a Topoisomerase II–DNA–Nucleotide Complex Reveals a New Control Mechanism for ATPase Activity. Nat. Struct. Mol. Biol. 2012;19:1147–1154. doi: 10.1038/nsmb.2388. PubMed DOI PMC
Deweese J.E., Osheroff N. The DNA Cleavage Reaction of Topoisomerase II: Wolf in Sheep’s Clothing. Nucleic Acids Res. 2009;37:738–748. doi: 10.1093/nar/gkn937. PubMed DOI PMC
Lee S., Jung S.-R., Heo K., Byl J.A.W., Deweese J.E., Osheroff N., Hohng S. DNA Cleavage and Opening Reactions of Human Topoisomerase IIα Are Regulated via Mg2+-Mediated Dynamic Bending of Gate-DNA. Proc. Natl. Acad. Sci. USA. 2012;109:2925–2930. doi: 10.1073/pnas.1115704109. PubMed DOI PMC
Singh B.N., Achary V.M.M., Venkatapuram A.K., Parmar H., Karippadakam S., Sopory S.K., Reddy M.K. Expression and Functional Analysis of Various Structural Domains of Tobacco Topoisomerase II: To Understand the Mechanistic Insights of Plant Type II Topoisomerases. Plant Physiol. Biochem. 2023;194:302–314. doi: 10.1016/j.plaphy.2022.11.019. PubMed DOI
Le T.T., Wu M., Lee J.H., Bhatt N., Inman J.T., Berger J.M., Wang M.D. Etoposide Promotes DNA Loop Trapping and Barrier Formation by Topoisomerase II. Nat. Chem. Biol. 2023;19:641–650. doi: 10.1038/s41589-022-01235-9. PubMed DOI PMC
Pommier Y., Leo E., Zhang H., Marchand C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem. Biol. 2010;17:421–433. doi: 10.1016/j.chembiol.2010.04.012. PubMed DOI PMC
Bax B.D., Murshudov G., Maxwell A., Germe T. DNA Topoisomerase Inhibitors: Trapping a DNA-Cleaving Machine in Motion. J. Mol. Biol. 2019;431:3427–3449. doi: 10.1016/j.jmb.2019.07.008. PubMed DOI PMC
Vann K.R., Oviatt A.A., Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry. 2021;60:1630–1641. doi: 10.1021/acs.biochem.1c00240. PubMed DOI PMC
Matias-Barrios V.M., Dong X. The Implication of Topoisomerase II Inhibitors in Synthetic Lethality for Cancer Therapy. Pharmaceuticals. 2023;16:94. doi: 10.3390/ph16010094. PubMed DOI PMC
Okoro C.O., Fatoki T.H. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int. J. Mol. Sci. 2023;24:2532. doi: 10.3390/ijms24032532. PubMed DOI PMC
Sun Y., Nitiss J.L., Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front. Mol. Biosci. 2022;9:871161. doi: 10.3389/fmolb.2022.871161. PubMed DOI PMC
Li Z., Jaroszewski L., Iyer M., Sedova M., Godzik A. FATCAT 2.0: Towards a Better Understanding of the Structural Diversity of Proteins. Nucleic Acids Res. 2020;48:W60–W64. doi: 10.1093/nar/gkaa443. PubMed DOI PMC
Chen K., Mizianty M.J., Kurgan L. Prediction and Analysis of Nucleotide-Binding Residues Using Sequence and Sequence-Derived Structural Descriptors. Bioinformatics. 2012;28:331–341. doi: 10.1093/bioinformatics/btr657. PubMed DOI
Wei H., Ruthenburg A.J., Bechis S.K., Verdine G.L. Nucleotide-Dependent Domain Movement in the ATPase Domain of a Human Type IIA DNA Topoisomerase. J. Biol. Chem. 2005;280:37041–37047. doi: 10.1074/jbc.M506520200. PubMed DOI
Stanger F.V., Dehio C., Schirmer T. Structure of the N-Terminal Gyrase B Fragment in Complex with ADP⋅Pi Reveals Rigid-Body Motion Induced by ATP Hydrolysis. PLoS ONE. 2014;9:e107289. doi: 10.1371/journal.pone.0107289. PubMed DOI PMC
Moreira F., Arenas M., Videira A., Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J. Mol. Evol. 2022;90:149–165. doi: 10.1007/s00239-022-10048-2. PubMed DOI
Valdés A., Coronel L., Martínez-García B., Segura J., Dyson S., Díaz-Ingelmo O., Micheletti C., Roca J. Transcriptional Supercoiling Boosts Topoisomerase II-Mediated Knotting of Intracellular DNA. Nucleic Acids Res. 2019;47:6946–6955. doi: 10.1093/nar/gkz491. PubMed DOI PMC
Lang A.J., Mirski S.E., Cummings H.J., Yu Q., Gerlach J.H., Cole S.P. Structural Organization of the Human TOP2A and TOP2B Genes. Gene. 1998;221:255–266. doi: 10.1016/S0378-1119(98)00468-5. PubMed DOI
Guglielmini J., Gaia M., Da Cunha V., Criscuolo A., Krupovic M., Forterre P. Viral Origin of Eukaryotic Type IIA DNA Topoisomerases. Virus Evol. 2022;8:veac097. doi: 10.1093/ve/veac097. PubMed DOI PMC
Letunic I., Bork P. 20 Years of the SMART Protein Domain Annotation Resource. Nucleic Acids Res. 2018;46:D493–D496. doi: 10.1093/nar/gkx922. PubMed DOI PMC
Corpet F. Multiple Sequence Alignment with Hierarchical Clustering. Nucleic Acids Res. 1988;16:10881–10890. doi: 10.1093/nar/16.22.10881. PubMed DOI PMC
Zhao R., Shin D.S., Fiser A., Goldman I.D. Identification of a Functionally Critical GXXG Motif and Its Relationship to the Folate Binding Site of the Proton-Coupled Folate Transporter (PCFT-SLC46A1) Am. J. Physiol. Cell Physiol. 2012;303:C673–C681. doi: 10.1152/ajpcell.00123.2012. PubMed DOI PMC
Wheeler T.J., Clements J., Finn R.D. Skylign: A Tool for Creating Informative, Interactive Logos Representing Sequence Alignments and Profile Hidden Markov Models. BMC Bioinform. 2014;15:7. doi: 10.1186/1471-2105-15-7. PubMed DOI PMC
Afowowe T.O., Sakurai Y., Urata S., Zadeh V.R., Yasuda J. Topoisomerase II as a Novel Antiviral Target against Panarenaviral Diseases. Viruses. 2022;15:105. doi: 10.3390/v15010105. PubMed DOI PMC
Cui W., Braun E., Wang W., Tang J., Zheng Y., Slater B., Li N., Chen C., Liu Q., Wang B., et al. Structural Basis for GTP-Induced Dimerization and Antiviral Function of Guanylate-Binding Proteins. Proc. Natl. Acad. Sci. USA. 2021;118:e2022269118. doi: 10.1073/pnas.2022269118. PubMed DOI PMC
Chang C.-C., Wang Y.-R., Chen S.-F., Wu C.-C., Chan N.-L. New Insights into DNA-Binding by Type IIA Topoisomerases. Curr. Opin. Struct. Biol. 2013;23:125–133. doi: 10.1016/j.sbi.2012.11.011. PubMed DOI
Murthy S.N.P., Iismaa S., Begg G., Freymann D.M., Graham R.M., Lorand L. Conserved Tryptophan in the Core Domain of Transglutaminase Is Essential for Catalytic Activity. Proc. Natl. Acad. Sci. USA. 2002;99:2738–2742. doi: 10.1073/pnas.052715799. PubMed DOI PMC
Lei X., Cao K., Chen Y., Shen H., Liu Z., Qin H., Cai J., Gao F., Yang Y. Nuclear Transglutaminase 2 Interacts with Topoisomerase II⍺ to Promote DNA Damage Repair in Lung Cancer Cells. J. Exp. Clin. Cancer Res. 2021;40:224. doi: 10.1186/s13046-021-02009-2. PubMed DOI PMC
Ogrizek M., Janežič M., Valjavec K., Perdih A. Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα. J. Chem. Inf. Model. 2022;62:3896–3909. doi: 10.1021/acs.jcim.2c00303. PubMed DOI PMC
Jovin T.M. Recognition Mechanisms of DNA-Specific Enzymes. Annu. Rev. Biochem. 1976;45:889–920. doi: 10.1146/annurev.bi.45.070176.004325. PubMed DOI
Bae S., Kim D., Kim K.K., Kim Y.-G., Hohng S. Intrinsic Z-DNA Is Stabilized by the Conformational Selection Mechanism of Z-DNA-Binding Proteins. J. Am. Chem. Soc. 2011;133:668–671. doi: 10.1021/ja107498y. PubMed DOI
Dong K.C., Berger J.M. Structural Basis for Gate-DNA Recognition and Bending by Type IIA Topoisomerases. Nature. 2007;450:1201–1205. doi: 10.1038/nature06396. PubMed DOI
Lee I., Dong K.C., Berger J.M. The Role of DNA Bending in Type IIA Topoisomerase Function. Nucleic Acids Res. 2013;41:5444–5456. doi: 10.1093/nar/gkt238. PubMed DOI PMC
Thomson N.H., Santos S., Mitchenall L.A., Stuchinskaya T., Taylor J.A., Maxwell A. DNA G-Segment Bending Is Not the Sole Determinant of Topology Simplification by Type II DNA Topoisomerases. Sci. Rep. 2014;4:6158. doi: 10.1038/srep06158. PubMed DOI PMC
Sarangi M.K., Zvoda V., Holte M.N., Becker N.A., Peters J.P., Maher L.J., III, Ansari A. Evidence for a Bind-Then-Bend Mechanism for Architectural DNA Binding Protein YNhp6A. Nucleic Acids Res. 2019;47:2871–2883. doi: 10.1093/nar/gkz022. PubMed DOI PMC
Dickerson R.E. DNA Bending: The Prevalence of Kinkiness and the Virtues of Normality. Nucleic Acids Res. 1998;26:1906–1926. doi: 10.1093/nar/26.8.1906. PubMed DOI PMC
Raskó T., Finta C., Kiss A. DNA Bending Induced by DNA (Cytosine-5) Methyltransferases. Nucleic Acids Res. 2000;28:3083–3091. doi: 10.1093/nar/28.16.3083. PubMed DOI PMC
Harteis S., Schneider S. Making the Bend: DNA Tertiary Structure and Protein-DNA Interactions. Int. J. Mol. Sci. 2014;15:12335–12363. doi: 10.3390/ijms150712335. PubMed DOI PMC
Yi J., Yeou S., Lee N.K. DNA Bending Force Facilitates Z-DNA Formation under Physiological Salt Conditions. J. Am. Chem. Soc. 2022;144:13137–13145. doi: 10.1021/jacs.2c02466. PubMed DOI PMC
Jang Y., Son H., Lee S.-W., Hwang W., Jung S.-R., Byl J.A.W., Osheroff N., Lee S. Selection of DNA Cleavage Sites by Topoisomerase II Results from Enzyme-Induced Flexibility of DNA. Cell Chem. Biol. 2019;26:502–511.e3. doi: 10.1016/j.chembiol.2018.12.003. PubMed DOI PMC
Ansevin A.T., Wang A.H. Evidence for a New Z-Type Left-Handed DNA Helix: Properties of Z(WC)-DNA. Nucleic Acids Res. 1990;18:6119–6126. doi: 10.1093/nar/18.20.6119. PubMed DOI PMC
Fuertes M.A., Cepeda V., Alonso C., Pérez J.M. Molecular Mechanisms for the B−Z Transition in the Example of Poly[d(G−C)·d(G−C)] Polymers. A Critical Review. Chem. Rev. 2006;106:2045–2064. doi: 10.1021/cr050243f. PubMed DOI
Chakraborty D., Wales D.J. Probing Helical Transitions in a DNA Duplex. Phys. Chem. Chem. Phys. 2017;19:878–892. doi: 10.1039/C6CP06309H. PubMed DOI
Jovin T.M., McIntosh L.P., Arndt-Jovin D.J., Zarling D.A., Robert-Nicoud M., van de Sande J.H., Jorgenson K.F., Eckstein F. Left-Handed DNA: From Synthetic Polymers to Chromosomes. J. Biomol. Struct. Dyn. 1983;1:21–57. doi: 10.1080/07391102.1983.10507425. PubMed DOI
Deweese J.E., Osheroff N. The Use of Divalent Metal Ions by Type II Topoisomerases. Metallomics. 2010;2:450–459. doi: 10.1039/c003759a. PubMed DOI PMC
Fogg J.M., Randall G.L., Pettitt B.M., Sumners D.W.L., Harris S.A., Zechiedrich L. Bullied No More: When and How DNA Shoves Proteins Around. Q. Rev. Biophys. 2012;45:257–299. doi: 10.1017/S0033583512000054. PubMed DOI PMC
Vlahovicek K., Munteanu M.G., Pongor S. Sequence-Dependent Modelling of Local DNA Bending Phenomena: Curvature Prediction and Vibrational Analysis. Genetica. 1999;106:63–73. doi: 10.1023/A:1003724710997. PubMed DOI
Hardin A.H., Sarkar S.K., Seol Y., Liou G.F., Osheroff N., Neuman K.C. Direct Measurement of DNA Bending by Type IIA Topoisomerases: Implications for Non-Equilibrium Topology Simplification. Nucleic Acids Res. 2011;39:5729–5743. doi: 10.1093/nar/gkr109. PubMed DOI PMC
Lee M., Kim S.H., Hong S.-C. Minute Negative Superhelicity Is Sufficient to Induce the B-Z Transition in the Presence of Low Tension. Proc. Natl. Sci. Acad. USA. 2010;107:4985–4990. doi: 10.1073/pnas.0911528107. PubMed DOI PMC
Fogg J.M., Catanese D.J., Randall G.L., Swick M.C., Zechiedrich L. Differences Between Positively and Negatively Supercoiled DNA That Topoisomerases May Distinguish. In: Benham C.J., Harvey S., Olson W.K., Sumners D.W., Swigon D., editors. Mathematics of DNA Structure, Function and Interactions. Volume 150. Springer; New York, NY, USA: 2009. pp. 73–121. The IMA Volumes in Mathematics and its Applications.
Vologodskii A. Theoretical Models of DNA Topology Simplification by Type IIA DNA Topoisomerases. Nucleic Acids Res. 2009;37:3125–3133. doi: 10.1093/nar/gkp250. PubMed DOI PMC
Cofsky J.C., Soczek K.M., Knott G.J., Nogales E., Doudna J.A. CRISPR-Cas9 Bends and Twists DNA to Read Its Sequence. Nat. Struct. Mol. Biol. 2022;29:395–402. doi: 10.1038/s41594-022-00756-0. PubMed DOI PMC
Stuchinskaya T., Mitchenall L.A., Schoeffler A.J., Corbett K.D., Berger J.M., Bates A.D., Maxwell A. How Do Type II Topoisomerases Use ATP Hydrolysis to Simplify DNA Topology beyond Equilibrium? Investigating the Relaxation Reaction of Nonsupercoiling Type II Topoisomerases. J. Mol. Biol. 2009;385:1397–1408. doi: 10.1016/j.jmb.2008.11.056. PubMed DOI PMC
Pohl F.M. Hysteretic Behaviour of a Z-DNA-Antibody Complex. Biophys. Chem. 1987;26:385–390. doi: 10.1016/0301-4622(87)80038-8. PubMed DOI
Igamberdiev A.U., Kleczkowski L.A. Toward Understanding the Emergence of Life: A Dual Function of the System of Nucleotides in the Metabolically Closed Autopoietic Organization. Biosystems. 2023;224:104837. doi: 10.1016/j.biosystems.2023.104837. PubMed DOI
Padget K., Pearson A.D., Austin C.A. Quantitation of DNA Topoisomerase IIalpha and Beta in Human Leukaemia Cells by Immunoblotting. Leukemia. 2000;14:1997–2005. doi: 10.1038/sj.leu.2401928. PubMed DOI
Walther N., Hossain M.J., Politi A.Z., Koch B., Kueblbeck M., Ødegård-Fougner Ø., Lampe M., Ellenberg J. A Quantitative Map of Human Condensins Provides New Insights into Mitotic Chromosome Architecture. J. Cell Biol. 2018;217:2309–2328. doi: 10.1083/jcb.201801048. PubMed DOI PMC
Nielsen C.F., Zhang T., Barisic M., Kalitsis P., Hudson D.F. Topoisomerase IIα Is Essential for Maintenance of Mitotic Chromosome Structure. Proc. Natl. Acad. Sci. USA. 2020;117:12131–12142. doi: 10.1073/pnas.2001760117. PubMed DOI PMC
Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., et al. A Pathway for Mitotic Chromosome Formation. Science. 2018;359:eaao6135. doi: 10.1126/science.aao6135. PubMed DOI PMC
Elbatsh A.M.O., Kim E., Eeftens J.M., Raaijmakers J.A., van der Weide R.H., García-Nieto A., Bravo S., Ganji M., Uit de Bos J., Teunissen H., et al. Distinct Roles for Condensin’s Two ATPase Sites in Chromosome Condensation. Mol. Cell. 2019;76:724–737.e5. doi: 10.1016/j.molcel.2019.09.020. PubMed DOI PMC
Zhou C.Y., Heald R. Emergent Properties of Mitotic Chromosomes. Curr. Opin. Cell Biol. 2020;64:43–49. doi: 10.1016/j.ceb.2020.02.003. PubMed DOI PMC
Man T., Witt H., Peterman E.J.G., Wuite G.J.L. The Mechanics of Mitotic Chromosomes. Q. Rev. Biophys. 2021;54:e10. doi: 10.1017/S0033583521000081. PubMed DOI
Paulson J.R., Hudson D.F., Cisneros-Soberanis F., Earnshaw W.C. Mitotic Chromosomes. Semin. Cell Dev. Biol. 2021;117:7–29. doi: 10.1016/j.semcdb.2021.03.014. PubMed DOI PMC
Dekker B., Dekker J. Regulation of the Mitotic Chromosome Folding Machines. Biochemistry. 2022;479:2153–2173. doi: 10.1042/BCJ20210140. PubMed DOI PMC
Stray J.E., Lindsley J.E. Biochemical Analysis of the Yeast Condensin Smc2/4 Complex: An ATPase That Promo.tes Knotting of Circular DNA. J. Biol. Chem. 2003;278:26238–26248. doi: 10.1074/jbc.M302699200. PubMed DOI
Mora-Bermúdez F., Gerlich D., Ellenberg J. Maximal Chromosome Compaction Occurs by Axial Shortening in Anaphase and Depends on Aurora Kinase. Nat. Cell Biol. 2007;9:822–831. doi: 10.1038/ncb1606. PubMed DOI
Baxter J., Aragón L. A Model for Chromosome Condensation Based on the Interplay between Condensin and Topoisomerase II. Trends Genet. 2012;28:110–117. doi: 10.1016/j.tig.2011.11.004. PubMed DOI
Roca J., Dyson S., Segura J., Valdés A., Martínez-García B. Keeping Intracellular DNA Untangled: A New Role for Condensin? BioEssays. 2022;44:e2100187. doi: 10.1002/bies.202100187. PubMed DOI
Samejima K., Samejima I., Vagnarelli P., Ogawa H., Vargiu G., Kelly D.A., de Lima Alves F., Kerr A., Green L.C., Hudson D.F., et al. Mitotic Chromosomes Are Compacted Laterally by KIF4 and Condensin and Axially by Topoisomerase IIα. J. Cell Biol. 2012;199:755–770. doi: 10.1083/jcb.201202155. PubMed DOI PMC
Riccio A.A., Schellenberg M.J., Williams R.S. Molecular Mechanisms of Topoisomerase 2 DNA–Protein Crosslink Resolution. Cell. Mol. Life Sci. 2020;77:81–91. doi: 10.1007/s00018-019-03367-z. PubMed DOI PMC
Shintomi K., Hirano T. Sister Chromatid Resolution: A Cohesin Releasing Network and Beyond. Chromosoma. 2010;119:459–467. doi: 10.1007/s00412-010-0271-z. PubMed DOI
Le T.T., Wang M.D. Topoisomerase II and Etoposide—A Tangled Tale. Nat. Chem. Biol. 2023;19:546–547. doi: 10.1038/s41589-022-01236-8. PubMed DOI PMC
Boulikas T. Nature of DNA Sequences at the Attachment Regions of Genes to the Nuclear Matrix. J. Cell. Biochem. 1993;52:14–22. doi: 10.1002/jcb.240520104. PubMed DOI
Herbert A. Nucleosomes and Flipons Exchange Energy to Alter Chromatin Conformation, the Readout of Genomic Information, and Cell Fate. Bioessays. 2022;44:e2200166. doi: 10.1002/bies.202200166. PubMed DOI
Wolff D.W., Bianchi-Smiraglia A., Nikiforov M.A. Compartmentalization and Regulation of GTP in Control of Cellular Phenotypes. Trends Mol. Med. 2022;28:758–769. doi: 10.1016/j.molmed.2022.05.012. PubMed DOI PMC
Traut T.W. Physiological Concentrations of Purines and Pyrimidines. Mol. Cell. Biochem. 1994;140:1–22. doi: 10.1007/BF00928361. PubMed DOI
Kaláb P., Pralle A., Isacoff E.Y., Heald R., Weis K. Analysis of a RanGTP-Regulated Gradient in Mitotic Somatic Cells. Nature. 2006;440:697–701. doi: 10.1038/nature04589. PubMed DOI
Kapoor T.M. Metaphase Spindle Assembly. Biology. 2017;6:8. doi: 10.3390/biology6010008. PubMed DOI PMC
Ozugergin I., Piekny A. Complementary Functions for the Ran Gradient during Division. Small GTPases. 2021;12:177–187. doi: 10.1080/21541248.2020.1725371. PubMed DOI PMC
Spence J.M., Critcher R., Ebersole T.A., Valdivia M.M., Earnshaw W.C., Fukagawa T., Farr C.J. Co-Localization of Centromere Activity, Proteins and Topoisomerase II within a Subdomain of the Major Human X Alpha-Satellite Array. EMBO J. 2002;21:5269–5280. doi: 10.1093/emboj/cdf511. PubMed DOI PMC
Kasinathan S., Henikoff S. Non-B-Form DNA Is Enriched at Centromeres. Mol. Biol. Evol. 2018;35:949–962. doi: 10.1093/molbev/msy010. PubMed DOI PMC
Mellone B.G., Fachinetti D. Diverse Mechanisms of Centromere Specification. Curr. Biol. 2021;31:R1491–R1504. doi: 10.1016/j.cub.2021.09.083. PubMed DOI PMC
Liu Q., Yi C., Zhang Z., Su H., Liu C., Huang Y., Li W., Hu X., Liu C., Birchler J.A., et al. Non-B-Form DNA Tends to Form in Centromeric Regions and Has Undergone Changes in Polyploid Oat Subgenomes. Proc. Natl. Acad. Sci. USA. 2023;120:e2211683120. doi: 10.1073/pnas.2211683120. PubMed DOI PMC
Mills W.E., Spence J.M., Fukagawa T., Farr C.J. Site-Specific Cleavage by Topoisomerase 2: A Mark of the Core Centromere. Int. J. Mol. Sci. 2018;19:534. doi: 10.3390/ijms19020534. PubMed DOI PMC
Biton Y.Y. Effects of Protein-Induced Local Bending and Sequence Dependence on the Configurations of Supercoiled DNA Minicircles. J. Chem. Theory Comput. 2018;14:2063–2075. doi: 10.1021/acs.jctc.7b01090. PubMed DOI
Wang L.H.-C., Mayer B., Stemmann O., Nigg E.A. Centromere DNA Decatenation Depends on Cohesin Removal and Is Required for Mammalian Cell Division. J. Cell Sci. 2010;123:806–813. doi: 10.1242/jcs.058255. PubMed DOI
Chu L., Zhang Z., Mukhina M., Zickler D., Kleckner N. Sister Chromatids Separate during Anaphase in a Three-Stage Program as Directed by Interaxis Bridges. Proc. Natl. Acad. Sci. USA. 2022;119:e2123363119. doi: 10.1073/pnas.2123363119. PubMed DOI PMC
Gibson E.G., Deweese J.E. Structural and Biochemical Basis of Etoposide-Resistant Mutations in Topoisomerase IIα. Symmetry. 2022;14:1309. doi: 10.3390/sym14071309. DOI
Jaramillo-Lambert A., Fabritius A.S., Hansen T.J., Smith H.E., Golden A. The Identification of a Novel Mutant Allele of Topoisomerase II in Caenorhabditis Elegans Reveals a Unique Role in Chromosome Segregation during Spermatogenesis. Genetics. 2016;204:1407–1422. doi: 10.1534/genetics.116.195099. PubMed DOI PMC
Zdraljevic S., Strand C., Seidel H.S., Cook D.E., Doench J.G., Andersen E.C. Natural Variation in a Single Amino Acid Substitution Underlies Physiological Responses to Topoisomerase II Poisons. PLoS Genet. 2017;13:e1006891. doi: 10.1371/journal.pgen.1006891. PubMed DOI PMC
Masullo L.A., Lopez L.F., Stefani F.D. A Common Framework for Single-Molecule Localization Using Sequential Structured Illumination. Biophys. Rep. 2022;2:100036. doi: 10.1016/j.bpr.2021.100036. PubMed DOI PMC
Austin C.A., Cowell I.G., Khazeem M.M., Lok D., Ng H.T. TOP2B’s Contributions to Transcription. Biochem. Soc. Trans. 2021;49:2483–2493. doi: 10.1042/BST20200454. PubMed DOI
Blower T.R., Bandak A., Lee A.S.Y., Austin C.A., Nitiss J.L., Berger J.M. A Complex Suite of Loci and Elements in Eukaryotic Type II Topoisomerases Determine Selective Sensitivity to Distinct Poisoning Agents. Nucleic Acids Res. 2019;47:8163–8179. doi: 10.1093/nar/gkz579. PubMed DOI PMC
Van Ravenstein S.X., Mehta K.P., Kavlashvili T., Byl J.A.W., Zhao R., Osheroff N., Cortez D., Dewar J.M. Topoisomerase II Poisons Inhibit Vertebrate DNA Replication through Distinct Mechanisms. EMBO J. 2022;41:e110632. doi: 10.15252/embj.2022110632. PubMed DOI PMC
Furet P., Schoepfer J., Radimerski T., Chène P. Discovery of a New Class of Catalytic Topoisomerase II Inhibitors Targeting the ATP-Binding Site by Structure Based Design. Part I. Bioorg. Med. Chem. Lett. 2009;19:4014–4017. doi: 10.1016/j.bmcl.2009.06.034. PubMed DOI
Park S., Hwang S.-Y., Shin J., Jo H., Na Y., Kwon Y. A Chromenone Analog as an ATP-Competitive, DNA Non-Intercalative Topoisomerase II Catalytic Inhibitor with Preferences toward the Alpha Isoform. ChemComm. 2019;55:12857–12860. doi: 10.1039/C9CC05524J. PubMed DOI
Ha S.C., Choi J., Hwang H.-Y., Rich A., Kim Y.-G., Kim K.K. The Structures of Non-CG-Repeat Z-DNAs Co-Crystallized with the Z-DNA-Binding Domain, HZα ADAR1. Nucleic Acids Res. 2009;37:629–637. doi: 10.1093/nar/gkn976. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Meng E.C., Pettersen E.F., Couch G.S., Huang C.C., Ferrin T.E. Tools for Integrated Sequence-Structure Analysis with UCSF Chimera. BMC Bioinform. 2006;7:339. doi: 10.1186/1471-2105-7-339. PubMed DOI PMC
Hunt S.E., McLaren W., Gil L., Thormann A., Schuilenburg H., Sheppard D., Parton A., Armean I.M., Trevanion S.J., Flicek P., et al. Ensembl Variation Resources. Database. 2018;2018:bay119. doi: 10.1093/database/bay119. PubMed DOI PMC
Ng P.C., Henikoff S. SIFT: Predicting Amino Acid Changes That Affect Protein Function. Nucleic Acids Res. 2003;31:3812–3814. doi: 10.1093/nar/gkg509. PubMed DOI PMC
Adzhubei I., Jordan D.M., Sunyaev S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. 2013;76:7–20. doi: 10.1002/0471142905.hg0720s76. PubMed DOI PMC
Ioannidis N.M., Rothstein J.H., Pejaver V., Middha S., McDonnell S.K., Baheti S., Musolf A., Li Q., Holzinger E., Karyadi D. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016;99:877–885. doi: 10.1016/j.ajhg.2016.08.016. PubMed DOI PMC
Reva B., Antipin Y., Sander C. Predicting the Functional Impact of Protein Mutations: Application to Cancer Genomics. Nucleic Acids Res. 2011;39:e118. doi: 10.1093/nar/gkr407. PubMed DOI PMC
Okonechnikov K., Golosova O., Fursov M., Team U. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Gouet P., Robert X., Courcelle E. ESPript/ENDscript: Extracting and Rendering Sequence and 3D Information from Atomic Structures of Proteins. Nucleic Acids Res. 2003;31:3320–3323. doi: 10.1093/nar/gkg556. PubMed DOI PMC
Yan Y., Zhang D., Zhou P., Li B., Huang S.-Y. HDOCK: A Web Server for Protein–Protein and Protein–DNA/RNA Docking Based on a Hybrid Strategy. Nucleic Acids Res. 2017;45:W365–W373. doi: 10.1093/nar/gkx407. PubMed DOI PMC
Zheng G., Lu X.-J., Olson W.K. Web 3DNA—A Web Server for the Analysis, Reconstruction, and Visualization of Three-Dimensional Nucleic-Acid Structures. Nucleic Acids Res. 2009;37:W240–W246. doi: 10.1093/nar/gkp358. PubMed DOI PMC
Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI
Kim D., Hur J., Han J.H., Ha S.C., Shin D., Lee S., Park S., Sugiyama H., Kim K.K. Sequence Preference and Structural Heterogeneity of BZ Junctions. Nucleic Acids Res. 2018;46:10504–10513. doi: 10.1093/nar/gky784. PubMed DOI PMC
Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H.J. PatchDock and SymmDock: Servers for Rigid and Symmetric Docking. Nucleic Acids Res. 2005;33:W363–W367. doi: 10.1093/nar/gki481. PubMed DOI PMC