Strong preference of BRCA1 protein to topologically constrained non-B DNA structures
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27277344
PubMed Central
PMC4898351
DOI
10.1186/s12867-016-0068-6
PII: 10.1186/s12867-016-0068-6
Knihovny.cz E-zdroje
- Klíčová slova
- BRCA1 protein, DNA binding, Protein-DNA complex,
- MeSH
- B-DNA chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- protein BRCA1 chemie metabolismus MeSH
- proteinové domény MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- B-DNA MeSH
- BRCA1 protein, human MeSH Prohlížeč
- protein BRCA1 MeSH
BACKGROUND: The breast and ovarian cancer susceptibility gene BRCA1 encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail. RESULTS: In this study, we provided detailed analyses of BRCA1 protein (DNA-binding domain, amino acid residues 444-1057) binding to topologically constrained non-B DNA structures (e.g. cruciform, triplex and quadruplex). Using electrophoretic retardation assay, atomic force microscopy and DNA binding competition assay, we showed the greatest preference of the BRCA1 DNA-binding domain to cruciform structure, followed by DNA quadruplex, with the weakest affinity to double stranded B-DNA and single stranded DNA. While preference of the BRCA1 protein to cruciform structures has been reported previously, our observations demonstrated for the first time a preferential binding of the BRCA1 protein also to triplex and quadruplex DNAs, including its visualization by atomic force microscopy. CONCLUSIONS: Our discovery highlights a direct BRCA1 protein interaction with DNA. When compared to double stranded DNA, such a strong preference of the BRCA1 protein to cruciform and quadruplex structures suggests its importance in biology and may thus shed insight into the role of these interactions in cell regulation and maintenance.
Zobrazit více v PubMed
Rosen EM. BRCA1 in the DNA damage response and at telomeres. Front Genet. 2013;4:85. doi: 10.3389/fgene.2013.00085. PubMed DOI PMC
Tu Z, Aird KM, Zhang R. Chromatin remodeling, BRCA1, SAHF and cellular senescence. Cell Cycle. 2013;12(11):1653–1654. doi: 10.4161/cc.24986. PubMed DOI PMC
Xu Y, Price BD. Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle. 2011;10(2):261–267. doi: 10.4161/cc.10.2.14543. PubMed DOI PMC
Wu J, Lu LY, Yu X. The role of BRCA1 in DNA damage response. Protein Cell. 2010;1(2):117–123. doi: 10.1007/s13238-010-0010-5. PubMed DOI PMC
Mark WY, Liao JC, Lu Y, Ayed A, Laister R, Szymczyna B, Chakrabartty A, Arrowsmith CH. Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein-protein and protein-DNA interactions? J Mol Biol. 2005;345(2):275–287. doi: 10.1016/j.jmb.2004.10.045. PubMed DOI
Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S, Mulligan K, Emberley ED, Lioe TF, Morrison PJ, et al. BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. Cancer Res. 2005;65(22):10265–10272. doi: 10.1158/0008-5472.CAN-05-1841. PubMed DOI
Paull TT, Cortez D, Bowers B, Elledge SJ, Gellert M. Direct DNA binding by Brca1. Proc Natl Acad Sci USA. 2001;98(11):6086–6091. doi: 10.1073/pnas.111125998. PubMed DOI PMC
Parvin JD. BRCA1 at a branch point. Proc Natl Acad Sci USA. 2001;98(11):5952–5954. doi: 10.1073/pnas.121184998. PubMed DOI PMC
Brazda V, Jagelska EB, Liao JC, Arrowsmith CH. The central region of BRCA1 binds preferentially to supercoiled DNA. J Biomol Struct Dyn. 2009;27(1):97–104. doi: 10.1080/07391102.2009.10507299. PubMed DOI
Smith GR. Meeting DNA palindromes head-to-head. Genes Dev. 2008;22(19):2612–2620. doi: 10.1101/gad.1724708. PubMed DOI PMC
Palecek E. Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991;26(2):151–226. doi: 10.3109/10409239109081126. PubMed DOI
van Holde K, Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays. 1994;16(1):59–68. doi: 10.1002/bies.950160110. PubMed DOI
Zlatanova J, van Holde K. Binding to four-way junction DNA: a common property of architectural proteins? Faseb J. 1998;12(6):421–431. PubMed
Gonzalez V, Guo K, Hurley L, Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem. 2009;284(35):23622–23635. doi: 10.1074/jbc.M109.018028. PubMed DOI PMC
Compton SA, Tolun G, Kamath-Loeb AS, Loeb LA, Griffith JD. The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J Biol Chem. 2008;283(36):24478–24483. doi: 10.1074/jbc.M803370200. PubMed DOI PMC
Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H. Escherichia coli RuvC protein is an endonuclease that resolves the holliday structure. EMBO J. 1991;10(13):4381–4389. PubMed PMC
Kim E, Deppert W. The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol. 2003;81(3):141–150. doi: 10.1139/o03-046. PubMed DOI
Zannis-Hadjopoulos M, Frappier L, Khoury M, Price GB. Effect of anti-cruciform DNA monoclonal antibodies on DNA replication. EMBO J. 1988;7(6):1837–1844. PubMed PMC
Zannis-Hadjopoulos M, Sibani S, Price GB. Eucaryotic replication origin binding proteins. Front Biosci. 2004;9:2133–2143. doi: 10.2741/1369. PubMed DOI
Brazda V, Laister RC, Jagelska EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Jagelska EB, Pivonkova H, Fojta M, Brazda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem Biophys Res Commun. 2010;391(3):1409–1414. doi: 10.1016/j.bbrc.2009.12.076. PubMed DOI
Coufal J, Jagelska EB, Liao JC, Brazda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem Biophys Res Commun. 2013;441(1):83–88. doi: 10.1016/j.bbrc.2013.10.015. PubMed DOI
Naseem R, Webb M. Analysis of the DNA binding activity of BRCA1 and its modulation by the tumour suppressor p53. PLoS ONE. 2008;3(6):e2336. doi: 10.1371/journal.pone.0002336. PubMed DOI PMC
Klysik J. Cruciform extrusion facilitates intramolecular triplex formation between distal oligopurine.oligopyrimidine tracts: long range effects. J Biol Chem. 1992;267(24):17430–17437. PubMed
Frank-Kamenetskii M. DNA structure. The turn of the quadruplex? Nature. 1989;342(6251):737. doi: 10.1038/342737a0. PubMed DOI
Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 2008;36(1):144–156. doi: 10.1093/nar/gkm986. PubMed DOI PMC
Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5(3):182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC
Huppert JL. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev. 2008;37(7):1375–1384. doi: 10.1039/b702491f. PubMed DOI
Johnson JE, Smith JS, Kozak ML, Johnson FB. In vivo veritas: using yeast to probe the biological functions of G-quadruplexes. Biochimie. 2008;90(8):1250–1263. doi: 10.1016/j.biochi.2008.02.013. PubMed DOI PMC
Welcsh PL, Lee MK, Gonzalez-Hernandez RM, Black DJ, Mahadevappa M, Swisher EM, Warrington JA, King MC. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci USA. 2002;99(11):7560–7565. doi: 10.1073/pnas.062181799. PubMed DOI PMC
Naseem R, Sturdy A, Finch D, Jowitt T, Webb M. Mapping and conformational characterization of the DNA-binding region of the breast cancer susceptibility protein BRCA1. Biochem J. 2006;395(3):529–535. doi: 10.1042/BJ20051646. PubMed DOI PMC
Zhang N, Fan YH, Bi CF, Zuo J, Zhang PF, Zhang ZY, Zhu Z. Synthesis, crystal structure, and DNA interaction of magnesium(II) complexes with Schiff bases. J Coord Chem. 2013;66(11):1933–1944. doi: 10.1080/00958972.2013.796039. DOI
Kohwi Y, Kohwishigematsu T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci USA. 1988;85(11):3781–3785. doi: 10.1073/pnas.85.11.3781. PubMed DOI PMC
Adhikari S, Toretsky JA, Yuan LS, Roy R. Magnesium, essential for base excision repair enzymes, inhibits substrate binding of N-methylpurine-DNA glycosylase. J Biol Chem. 2006;281(40):29525–29532. doi: 10.1074/jbc.M602673200. PubMed DOI
Frick DN, Banik S, Rypma RS. Role of divalent metal cations in ATP hydrolysis catalyzed by the hepatitis C virus NS3 helicase: magnesium provides a bridge for ATP to fuel unwinding. J Mol Biol. 2007;365(4):1017–1032. doi: 10.1016/j.jmb.2006.10.023. PubMed DOI PMC
Cameron IL, Smith NKR. Cellular concentration of magnesium and other ions in relation to protein-synthesis cell-proliferation and cancer. Magnesium. 1989;8(1):31–44. PubMed
Palecek E, Brazdova M, Cernocka H, Vlk D, Brazda V, Vojtesek B. Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments. Oncogene. 1999;18(24):3617–3625. doi: 10.1038/sj.onc.1202710. PubMed DOI
Coleman KA, Greenberg RA. The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 2011;286(15):13669–13680. doi: 10.1074/jbc.M110.213728. PubMed DOI PMC
Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4(4):511–518. doi: 10.1016/S1097-2765(00)80202-6. PubMed DOI
Zhong Q, Chen CF, Chen PL, Lee WH. BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks. J Biol Chem. 2002;277(32):28641–28647. doi: 10.1074/jbc.M200748200. PubMed DOI
Cote AG, Lewis SM. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol Cell. 2008;31(6):800–812. doi: 10.1016/j.molcel.2008.08.025. PubMed DOI
Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov. 2011;10(4):261–275. doi: 10.1038/nrd3428. PubMed DOI PMC
Brazda V, Haronikova L, Liao JC, Fojta M. DNA and RNA quadruplex-binding proteins. Int J Mol Sci. 2014;15(10):17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC
Xiong J, Fan S, Meng Q, Schramm L, Wang C, Bouzahza B, Zhou J, Zafonte B, Goldberg ID, Haddad BR, et al. BRCA1 inhibition of telomerase activity in cultured cells. Mol Cell Biol. 2003;23(23):8668–8690. doi: 10.1128/MCB.23.23.8668-8690.2003. PubMed DOI PMC
Ballal RD, Saha T, Fan S, Haddad BR, Rosen EM. BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage. J Biol Chem. 2009;284(52):36083–36098. doi: 10.1074/jbc.M109.025825. PubMed DOI PMC
Pooley KA, McGuffog L, Barrowdale D, Frost D, Ellis SD, Fineberg E, Platte R, Izatt L, Adlard J, Bardwell J, et al. Lymphocyte telomere length is long in BRCA1 and BRCA2 mutation carriers regardless of cancer-affected status. Cancer Epidemiol Biomarkers Prev. 2014;23(6):1018–1024. doi: 10.1158/1055-9965.EPI-13-0635-T. PubMed DOI PMC
Staff S, Isola J, Tanner M. Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res. 2003;63(16):4978–4983. PubMed
Jagelska EB, Brazda V, Pecinka P, Palecek E, Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J. 2008;412(1):57–63. doi: 10.1042/BJ20071648. PubMed DOI
Simonsson T, Pecinka P, Kubista M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 1998;26(5):1167–1172. doi: 10.1093/nar/26.5.1167. PubMed DOI PMC
Necas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys. 2012;10(1):181–188.
Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids