G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes

. 2024 Jun ; 6 (2) : lqae060. [epub] 20240530

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38817800

Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.

Zobrazit více v PubMed

Harvati  K., Gunz  P., Grigorescu  D.  Cioclovina (Romania): affinities of an early modern European. J. Hum. Evol.  2007; 53:732–746. PubMed

Soficaru  A., Doboş  A., Trinkaus  E.  Early modern humans from the Peştera Muierii, Baia de Fier, Romania. Proc. Natl. Acad. Sci. USA. 2006; 103:17196–17201. PubMed PMC

Prüfer  K., de Filippo  C., Grote  S., Mafessoni  F., Korlević  P., Hajdinjak  M., Vernot  B., Skov  L., Hsieh  P., Peyrégne  S.  et al. .  A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 2017; 358:655–658. PubMed PMC

Prüfer  K., Racimo  F., Patterson  N., Jay  F., Sankararaman  S., Sawyer  S., Heinze  A., Renaud  G., Sudmant  P.H., de Filippo  C.  et al. .  The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014; 505:43–49. PubMed PMC

Green  R.E., Malaspinas  A.-S., Krause  J., Briggs  A.W., Johnson  P.L.F., Uhler  C., Meyer  M., Good  J.M., Maricic  T., Stenzel  U.  et al. .  A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell. 2008; 134:416–426. PubMed PMC

Serre  D., Langaney  A., Chech  M., Teschler-Nicola  M., Paunovic  M., Mennecier  P., Hofreiter  M., Possnert  G., Pääbo  S.  No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol.  2004; 2:e57. PubMed PMC

Briggs  A.W., Good  J.M., Green  R.E., Krause  J., Maricic  T., Stenzel  U., Lalueza-Fox  C., Rudan  P., Brajković  D., Kućan  Ž.  et al. .  Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science. 2009; 325:318–321. PubMed

Mafessoni  F., Grote  S., De Filippo  C., Slon  V., Kolobova  K.A., Viola  B., Markin  S.V., Chintalapati  M., Peyrégne  S., Skov  L.  et al. .  A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl. Acad. Sci. USA. 2020; 117:15132–15136. PubMed PMC

Hajdinjak  M., Fu  Q., Hübner  A., Petr  M., Mafessoni  F., Grote  S., Skoglund  P., Narasimham  V., Rougier  H., Crevecoeur  I.  et al. .  Reconstructing the genetic history of late Neanderthals. Nature. 2018; 555:652–656. PubMed PMC

Wall  J.D., Yang  M.A., Jay  F., Kim  S.K., Durand  E.Y., Stevison  L.S., Gignoux  C., Woerner  A., Hammer  M.F., Slatkin  M.  Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics. 2013; 194:199–209. PubMed PMC

Sankararaman  S., Mallick  S., Dannemann  M., Prüfer  K., Kelso  J., Pääbo  S., Patterson  N., Reich  D.  The genomic landscape of Neanderthal ancestry in present-day humans. Nature. 2014; 507:354–357. PubMed PMC

Reich  D., Green  R.E., Kircher  M., Krause  J., Patterson  N., Durand  E.Y., Viola  B., Briggs  A.W., Stenzel  U., Johnson  P.L.F.  et al. .  Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010; 468:1053–1060. PubMed PMC

Fu  Q., Li  H., Moorjani  P., Jay  F., Slepchenko  S.M., Bondarev  A.A., Johnson  P.L.F., Aximu-Petri  A., Prüfer  K., De Filippo  C.  et al. .  Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014; 514:445–449. PubMed PMC

Reilly  P.F., Tjahjadi  A., Miller  S.L., Akey  J.M., Tucci  S.  The contribution of Neanderthal introgression to modern human traits. Curr. Biol.  2022; 32:R970–R983. PubMed PMC

Deschamps  M., Laval  G., Fagny  M., Itan  Y., Abel  L., Casanova  J.-L., Patin  E., Quintana-Murci  L.  Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am. Hum. Genet.  2016; 98:5–21. PubMed PMC

Enard  D., Petrov  D.A.  Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell. 2018; 175:360–371. PubMed PMC

Zhang  X., Witt  K.E., Bañuelos  M.M., Ko  A., Yuan  K., Xu  S., Nielsen  R., Huerta-Sanchez  E.  The history and evolution of the Denisovan- EPAS1 haplotype in Tibetans. Proc. Natl. Acad. Sci. U.S.A.  2021; 118:e2020803118. PubMed PMC

International Human Genome Sequencing Consortium, Whitehead Institute for Biomedical Research, Center for Genome Research Lander  E.S., Linton  L.M., Birren  B., Nusbaum  C., Zody  M.C., Baldwin  J., Devon  K., Dewar  K.  et al. .  Initial sequencing and analysis of the human genome. Nature. 2001; 409:860–921. PubMed

Venter  J.C., Adams  M.D., Myers  E.W., Li  P.W., Mural  R.J., Sutton  G.G., Smith  H.O., Yandell  M., Evans  C.A., Holt  R.A.  et al. .  The sequence of the human genome. Science. 2001; 291:1304–1351. PubMed

Nurk  S., Koren  S., Rhie  A., Rautiainen  M., Bzikadze  A.V., Mikheenko  A., Vollger  M.R., Altemose  N., Uralsky  L., Gershman  A.  et al. .  The complete sequence of a human genome. Science. 2022; 376:44–53. PubMed PMC

Kerner  G., Patin  E., Quintana-Murci  L.  New insights into human immunity from ancient genomics. Curr. Opin. Immunol.  2021; 72:116–125. PubMed PMC

Mergny  J.-L., Sen  D.  DNA quadruple helices in nanotechnology. Chem. Rev.  2019; 119:6290–6325. PubMed

Wong  A., Wu  G.  Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5‘-monophosphate: a solid-state NMR study. J. Am. Chem. Soc.  2003; 125:13895–13905. PubMed

Harkness  R.W., Mittermaier  A.K.  G-quadruplex dynamics. Biochim. Biophys. Acta (BBA) - Proteins Proteomics. 2017; 1865:1544–1554. PubMed

Bartas  M., Čutová  M., Brázda  V., Kaura  P., Šťastný  J., Kolomazník  J., Coufal  J., Goswami  P., Červeň  J., Pečinka  P.  The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules. 2019; 24:1711. PubMed PMC

Bohálová  N., Mergny  J.-L., Brázda  V.  Novel G-quadruplex prone sequences emerge in the complete assembly of the human X chromosome. Biochimie. 2021; 191:87–90. PubMed

Brázda  V., Luo  Y., Bartas  M., Kaura  P., Porubiaková  O., Šťastný  J., Pečinka  P., Verga  D., Da Cunha  V., Takahashi  T.S.  et al. .  G-quadruplexes in the archaea domain. Biomolecules. 2020; 10:1349. PubMed PMC

Chashchina  G.V., Shchyolkina  A.K., Kolosov  S.V., Beniaminov  A.D., Kaluzhny  D.N.  Recurrent potential G-quadruplex sequences in archaeal genomes. Front. Microbiol.  2021; 12:647851. PubMed PMC

Cueny  R.R., McMillan  S.D., Keck  J.L.  G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit. Rev. Biochem. Mol. Biol.  2022; 57:539–561. PubMed PMC

Dobrovolná  M., Bohálová  N., Peška  V., Wang  J., Luo  Y., Bartas  M., Volná  A., Mergny  J.-L., Brázda  V.  The newly sequenced genome of Pisum sativum is replete with potential G-quadruplex-forming sequences—implications for evolution and biological regulation. Int. J. Mol. Sci.  2022; 23:8482. PubMed PMC

Griffin  B.D., Bass  H.W.  Plant G-quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function. Plant Sci.  2018; 269:143–147. PubMed

Huppert  J.L.  Prevalence of quadruplexes in the human genome. Nucleic Acids Res.  2005; 33:2908–2916. PubMed PMC

Zhang  Z.-H., Qian  S.H., Wei  D., Chen  Z.-X.  In vivo dynamics and regulation of DNA G-quadruplex structures in mammals. Cell Biosci.  2023; 13:117. PubMed PMC

Rhodes  D., Lipps  H.J.  G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res.  2015; 43:8627–8637. PubMed PMC

Galli  S., Melidis  L., Flynn  S.M., Varshney  D., Simeone  A., Spiegel  J., Madden  S.K., Tannahill  D., Balasubramanian  S.  DNA G-quadruplex recognition in vitro and in live cells by a structure-specific manobody. J. Am. Chem. Soc.  2022; 144:23096–23103. PubMed PMC

Jansson  L.I., Hentschel  J., Parks  J.W., Chang  T.R., Lu  C., Baral  R., Bagshaw  C.R., Stone  M.D.  Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc. Natl. Acad. Sci. U.S.A.  2019; 116:9350–9359. PubMed PMC

Raguseo  F., Chowdhury  S., Minard  A., Di Antonio  M.  Chemical-biology approaches to probe DNA and RNA G-quadruplex structures in the genome. Chem. Commun.  2020; 56:1317–1324. PubMed

Brázda  V., Bohálová  N., Bowater  R.P.  New telomere to telomere assembly of human chromosome 8 reveals a previous underestimation of G-quadruplex forming sequences and inverted repeats. Gene. 2022; 810:146058. PubMed

Kang  Y., Wei  C.  A stilbene derivative as dual-channel fluorescent probe for mitochondrial G-quadruplex DNA in living cells. Spectrochim. Acta Part A. 2022; 278:121316. PubMed

Varshney  D., Spiegel  J., Zyner  K., Tannahill  D., Balasubramanian  S.  The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol.  2020; 21:459–474. PubMed PMC

Bedrat  A., Lacroix  L., Mergny  J.-L.  Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res.  2016; 44:1746–1759. PubMed PMC

Doimo  M., Chaudhari  N., Abrahamsson  S., L’Hôte  V., Nguyen  T.V.H., Berner  A., Ndi  M., Abrahamsson  A., Das  R.N., Aasumets  K.  et al. .  Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells. Nucleic Acids Res.  2023; 51:7392–7408. PubMed PMC

Bohálová  N., Dobrovolná  M., Brázda  V., Bidula  S.  Conservation and over-representation of G-quadruplex sequences in regulatory regions of mitochondrial DNA across distinct taxonomic sub-groups. Biochimie. 2022; 194:28–34. PubMed

Cavalcante  G.C., Magalhães  L., Ribeiro-dos-Santos  Â., Vidal  A.F.  Mitochondrial epigenetics: non-coding RNAs as a novel layer of complexity. Int. J. Mol. Sci.  2020; 21:1838. PubMed PMC

Liu  C.-C., Fang  T.-J., Ou  T.-T., Wu  C.-C., Li  R.-N., Lin  Y.-C., Lin  C.-H., Tsai  W.-C., Liu  H.-W., Yen  J.-H.  Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol. Lett.  2011; 135:96–99. PubMed

Guo  X., Jing  C., Li  L., Zhang  L., Shi  Y., Wang  J., Liu  J., Li  C.  Down-regulation of VEZT gene expression in human gastric cancer involves promoter methylation and miR-43c. Biochem. Biophys. Res. Commun.  2011; 404:622–627. PubMed

Zhang  J., Zhang  J., Lai  R., Peng  C., Guo  Z., Wang  C.  Risk-associated single nucleotide polymorphisms of mitochondrial D-loop mediate imbalance of cytokines and redox in rheumatoid arthritis. Int. J of Rheum. Dis.  2023; 26:124–131. PubMed

Zhao  Y., Peng  C., Lai  R., Zhang  J., Zhang  X., Guo  Z.  The SNPs of mitochondrial DNA displacement loop region and mitochondrial DNA copy number associated with risk of polymyositis and dermatomyositis. Sci. Rep.  2022; 12:5903. PubMed PMC

Zhao  Y., Peng  C., Zhang  J., Lai  R., Zhang  X., Guo  Z.  Mitochondrial displacement loop region SNPs modify Sjögren's syndrome development by regulating cytokines expression in female patients. Front. Genet.  2022; 13:847521. PubMed PMC

Mposhi  A., Liang  L., Mennega  K.P., Yildiz  D., Kampert  C., Hof  I.H., Jellema  P.G., De Koning  T.J., Faber  K.N., Ruiters  M.H.J.  et al. .  The mitochondrial epigenome: an unexplored avenue to explain unexplained myopathies?. Int. J. Mol. Sci.  2022; 23:2197. PubMed PMC

Lai  R., Zhang  X., Qiao  K., Gao  X., Li  S., Zhang  R., Qi  Y., Peng  C.  Identification of sequence polymorphisms in the mitochondrial deoxyribonucleic acid displacement-loop region as risk factors for systemic lupus erythematosus. Arch. Rheumatol.  2021; 36:375–380. PubMed PMC

Stoccoro  A., Smith  A.R., Baldacci  F., Del Gamba  C., Lo Gerfo  A., Ceravolo  R., Lunnon  K., Migliore  L., Coppedè  F.  Mitochondrial D-loop region methylation and copy number in peripheral blood DNA of Parkinson's disease patients. Genes. 2021; 12:720. PubMed PMC

Yang  H.  Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol. Med. Rep.  2012; 6:125–130. PubMed

Nicholls  T.J., Minczuk  M.  In D-loop: 40years of mitochondrial 7S DNA. Exp. Gerontol.  2014; 56:175–181. PubMed

Esnault  C., Magat  T., Zine El Aabidine  A., Garcia-Oliver  E., Cucchiarini  A., Bouchouika  S., Lleres  D., Goerke  L., Luo  Y., Verga  D.  et al. .  G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat. Genet.  2023; 55:1359–1369. PubMed

Okonechnikov  K., Golosova  O., Fursov  M.the UGENE team  Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28:1166–1167. PubMed

Crooks  G.E., Hon  G., Chandonia  J.-M., Brenner  S.E.  WebLogo: a sequence logo generator: Figure 1. Genome Res.  2004; 14:1188–1190. PubMed PMC

Luo  Y., Granzhan  A., Marquevielle  J., Cucchiarini  A., Lacroix  L., Amrane  S., Verga  D., Mergny  J.-L.  Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie. 2022; 214:5–23. PubMed

Renaud De La Faverie  A., Guédin  A., Bedrat  A., Yatsunyk  L.A., Mergny  J.-L  Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res.  2014; 42:e65. PubMed PMC

Zhang  Z., Schwartz  S., Wagner  L., Miller  W.  A greedy algorithm for aligning DNA sequences. J. Comput. Biol.  2000; 7:203–214. PubMed

Sengar  A., Heddi  B., Phan  A.T.  Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G 15 stretch. Biochemistry. 2014; 53:7718–7723. PubMed

Behar  D.M., van Oven  M., Rosset  S., Metspalu  M., Loogväli  E.-L., Silva  N.M., Kivisild  T., Torroni  A., Villems  R.  A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. Hum. Genet.  2012; 90:675–684. PubMed PMC

Luo  Y., Granzhan  A., Verga  D., Mergny  J.  FRET-MC: a fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers. 2021; 112:e23415. PubMed

Mergny  J.-L.  Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res.  2005; 33:e138. PubMed PMC

Chu  I.-T., Wu  C.-C., Chang  T.-C.  G-quadruplex formation by single-base mutation or deletion of mitochondrial DNA sequences. Biochim. Biophys. Acta. 2019; 1863:418–425. PubMed

Sahayasheela  V.J., Yu  Z., Hidaka  T., Pandian  G.N., Sugiyama  H.  Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends Genet.  2023; 39:15–30. PubMed PMC

Butler  T.J., Estep  K.N., Sommers  J.A., Maul  R.W., Moore  A.Z., Bandinelli  S., Cucca  F., Tuke  M.A., Wood  A.R., Bharti  S.K.  et al. .  Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Hum. Mol. Genet.  2020; 29:1292–1309. PubMed PMC

Bharti  S.K., Sommers  J.A., Zhou  J., Kaplan  D.L., Spelbrink  J.N., Mergny  J.-L., Brosh  R.M.  DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative twinkle helicase. J. Biol. Chem.  2014; 289:29975–29993. PubMed PMC

Sullivan  E.D., Longley  M.J., Copeland  W.C.  Polymerase γ efficiently replicates through many natural template barriers but stalls at the HSP1 quadruplex. J. Biol. Chem.  2020; 295:17802–17815. PubMed PMC

Falabella  M., Kolesar  J.E., Wallace  C., De Jesus  D., Sun  L., Taguchi  Y.V., Wang  C., Wang  T., Xiang  I.M., Alder  J.K.  et al. .  G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci. Rep.  2019; 9:5605. PubMed PMC

Wanrooij  P.H., Uhler  J.P., Shi  Y., Westerlund  F., Falkenberg  M., Gustafsson  C.M.  A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res.  2012; 40:10334–10344. PubMed PMC

Wanrooij  P.H., Uhler  J.P., Simonsson  T., Falkenberg  M., Gustafsson  C.M.  G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc. Natl. Acad. Sci. U.S.A.  2010; 107:16072–16077. PubMed PMC

Huang  W.-C., Tseng  T.-Y., Chen  Y.-T., Chang  C.-C., Wang  Z.-F., Wang  C.-L., Hsu  T.-N., Li  P.-T., Chen  C.-T., Lin  J.-J.  et al. .  Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res.  2015; 43:10102–10113. PubMed PMC

Falabella  M., Fernandez  R.J., Johnson  F.B., Kaufman  B.A.  Potential roles for G-quadruplexes in mitochondria. CMC. 2019; 26:2918–2932. PubMed PMC

Liou  C.-W., Lin  T.-K., Huang  F.-M., Chen  T.-L., Lee  C.-F., Chuang  Y.-C., Tan  T.-Y., Chang  K.-C., Wei  Y.-H.  Association of the mitochondrial DNA 16189 T to C variant with lacunar cerebral infarction: evidence from a hospital-based case-control study. Ann. N. Y. Acad. Sci.  2004; 1011:317–324. PubMed

Pandey  R., Mehrotra  D., Mahdi  A.A., Sarin  R., Kowtal  P.  Additional cytosine inside mitochondrial C-tract D-loop as a progression risk factor in oral precancer cases. J. Oral Biol. Craniof. Res.  2014; 4:3–7. PubMed PMC

Ha  P.K., Tong  B.C., Westra  W.H., Sanchez-Cespedes  M., Parrella  P., Zahurak  M., Sidransky  D., Califano  J.A.  Mitochondrial C-tract alteration in premalignant lesions of the head and neck: a marker for progression and clonal proliferation. Clin. Cancer Res.  2002; 8:2260–2265. PubMed

Tang  D., Zhou  X., Zhou  K., Li  X., Zhao  L., Liu  F., Zheng  F., Liu  S.  [Association of mitochondrial DNA variation with type 2 diabetes mellitus]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005; 22:636–640. PubMed

Liou  C.-W., Lin  T.-K., Chen  J.-B., Tiao  M.-M., Weng  S.-W., Chen  S.-D., Chuang  Y.-C., Chuang  J.-H., Wang  P.-W.  Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J. Med. Genet.  2010; 47:723–728. PubMed

Agaronyan  K., Morozov  Y.I., Anikin  M., Temiakov  D.  Mitochondrial biology. Replication-transcription switch in human mitochondria. Science. 2015; 347:548–551. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace