R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34884661
PubMed Central
PMC8657672
DOI
10.3390/ijms222312857
PII: ijms222312857
Knihovny.cz E-zdroje
- Klíčová slova
- RNA–DNA hybrid, non-B structure, sequence analysis,
- MeSH
- algoritmy * MeSH
- DNA chemie genetika MeSH
- genomika metody MeSH
- internet statistika a číselné údaje MeSH
- lidé MeSH
- nestabilita genomu * MeSH
- R-smyčka * MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
R-loops are common non-B nucleic acid structures formed by a three-stranded nucleic acid composed of an RNA-DNA hybrid and a displaced single-stranded DNA (ssDNA) loop. Because the aberrant R-loop formation leads to increased mutagenesis, hyper-recombination, rearrangements, and transcription-replication collisions, it is regarded as important in human diseases. Therefore, its prevalence and distribution in genomes are studied intensively. However, in silico tools for R-loop prediction are limited, and therefore, we have developed the R-loop tracker tool, which was implemented as a part of the DNA Analyser web server. This new tool is focused upon (1) prediction of R-loops in genomic DNA without length and sequence limitations; (2) integration of R-loop tracker results with other tools for nucleic acids analyses, including Genome Browser; (3) internal cross-evaluation of in silico results with experimental data, where available; (4) easy export and correlation analyses with other genome features and markers; and (5) enhanced visualization outputs. Our new R-loop tracker tool is freely accessible on the web pages of DNA Analyser tools, and its implementation on the web-based server allows effective analyses not only for DNA segments but also for full chromosomes and genomes.
Zobrazit více v PubMed
Watson J.D., Crick F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Gentry M., Hennig L. A Structural Bisulfite Assay to Identify DNA Cruciforms. Mol. Plant. 2016;9:1328–1336. doi: 10.1016/j.molp.2016.06.003. PubMed DOI
Rich A., Zhang S. Timeline: Z-DNA: The Long Road to Biological Function. Nat. Rev. Genet. 2003;4:566–572. doi: 10.1038/nrg1115. PubMed DOI
Li H., Xiao J., Li J., Lu L., Feng S., Droge P. Human Genomic Z-DNA Segments Probed by the Z Domain of ADAR1. Nucleic Acids Res. 2009;37:2737–2746. doi: 10.1093/nar/gkp124. PubMed DOI PMC
Jain A., Rajeswari M.R., Ahmed F. Formation and Thermodynamic Stability of Intermolecular (R*R Center Dot Y) DNA Triplex in GAA/TTC Repeats Associated with Freidreich’s Ataxia. J. Biomol. Struct. Dyn. 2002;19:691–699. doi: 10.1080/07391102.2002.10506775. PubMed DOI
Lee H.-T., Khutsishvili I., Marky L.A. DNA Complexes Containing Joined Triplex and Duplex Motifs: Melting Behavior of Intramolecular and Bimolecular Complexes with Similar Sequences. J. Phys. Chem. B. 2010;114:541–548. doi: 10.1021/jp9084074. PubMed DOI
Huppert J.L., Balasubramanian S. G-Quadruplexes in Promoters throughout the Human Genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC
Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-Quadruplex Structures Are Stable and Detectable in Human Genomic DNA. Nat. Commun. 2013;4:1796. doi: 10.1038/ncomms2792. PubMed DOI PMC
Kamura T., Katsuda Y., Kitamura Y., Ihara T. G-Quadruplexes in MRNA: A Key Structure for Biological Function. Biochem. Biophys. Res. Commun. 2020;526:261–266. doi: 10.1016/j.bbrc.2020.02.168. PubMed DOI
Bedrat A., Lacroix L., Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Brázda V., Coufal J. Recognition of Local DNA Structures by P53 Protein. Int J Mol Sci. 2017;18:375. doi: 10.3390/ijms18020375. PubMed DOI PMC
Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC
Pan X., Jiang N., Chen X., Zhou X., Ding L., Duan F. R-Loop Structure: The Formation and the Effects on Genomic Stability. Yi Chuan Hered. 2014;36:1185–1194. doi: 10.3724/SP.J.1005.2014.1185. PubMed DOI
Groh M., Lufino M.M.P., Wade-Martins R., Gromak N. R-Loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome. PLoS Genet. 2014;10:e1004318. doi: 10.1371/journal.pgen.1004318. PubMed DOI PMC
Richard P., Manley J.L. R Loops and Links to Human Disease. J. Mol. Biol. 2017;429:3168–3180. doi: 10.1016/j.jmb.2016.08.031. PubMed DOI PMC
Cristini A., Gromak N., Sordet O. Transcription-Dependent DNA Double-Strand Breaks and Human Disease. Mol. Cell. Oncol. 2020;7:1691905. doi: 10.1080/23723556.2019.1691905. PubMed DOI PMC
Chasovskikh S., Dimtchev A., Smulson M., Dritschilo A. DNA Transitions Induced by Binding of PARP-1 to Cruciform Structures in Supercoiled Plasmids. Cytom. Part J. Int. Soc. Anal. Cytol. 2005;68:21–27. doi: 10.1002/cyto.a.20187. PubMed DOI
Shen X., Mizuguchi G., Hamiche A., Wu C. A Chromatin Remodelling Complex Involved in Transcription and DNA Processing. Nature. 2000;406:541–544. doi: 10.1038/35020123. PubMed DOI
Chakraborty P. New Insight into the Biology of R-Loops. Mutat. Res. 2020;821:111711. doi: 10.1016/j.mrfmmm.2020.111711. PubMed DOI
Cer R., Bruce K., Donohue D., Temiz N., Mudunuri U., Yi M., Volfovsky N., Bacolla A., Luke B., Collins J.R., et al. Searching for Non-B DNA-Forming Motifs Using NBMST (Non-B DNA Motif Search Tool) Curr. Protoc. Hum. Genet. 2012;73:18.7.1–18.7.22. doi: 10.1002/0471142905.hg1807s73. PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Puig Lombardi E., Londoño-Vallejo A. A Guide to Computational Methods for G-Quadruplex Prediction. Nucleic Acids Res. 2019;48:1603. doi: 10.1093/nar/gkaa033. PubMed DOI PMC
Jenjaroenpun P., Wongsurawat T., Yenamandra S.P., Kuznetsov V.A. QmRLFS-Finder: A Model, Web Server and Stand-Alone Tool for Prediction and Analysis of R-Loop Forming Sequences. Nucleic Acids Res. 2015;43:W527–W534. doi: 10.1093/nar/gkv344. PubMed DOI PMC
Roy D., Lieber M.R. G Clustering Is Important for the Initiation of Transcription-Induced R-Loops in Vitro, Whereas High G Density without Clustering Is Sufficient Thereafter. Mol. Cell. Biol. 2009;29:3124–3133. doi: 10.1128/MCB.00139-09. PubMed DOI PMC
Haeussler M., Zweig A.S., Tyner C., Speir M.L., Rosenbloom K.R., Raney B.J., Lee C.M., Lee B.T., Hinrichs A.S., Gonzalez J.N., et al. The UCSC Genome Browser Database: 2019 Update. Nucleic Acids Res. 2019;47:D853–D858. doi: 10.1093/nar/gky1095. PubMed DOI PMC
Kim A., Wang G.G. R-Loop and Its Functions at the Regulatory Interfaces between Transcription and (Epi)Genome. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2021;1864:194750. doi: 10.1016/j.bbagrm.2021.194750. PubMed DOI PMC
Brambati A., Zardoni L., Nardini E., Pellicioli A., Liberi G. The Dark Side of RNA:DNA Hybrids. Mutat. Res. 2020;784:108300. doi: 10.1016/j.mrrev.2020.108300. PubMed DOI
Ui A., Chiba N., Yasui A. Relationship among DNA Double-Strand Break (DSB), DSB Repair, and Transcription Prevents Genome Instability and Cancer. Cancer Sci. 2020;111:1443–1451. doi: 10.1111/cas.14404. PubMed DOI PMC
Yan P., Liu Z., Song M., Wu Z., Xu W., Li K., Ji Q., Wang S., Liu X., Yan K., et al. Genome-Wide R-Loop Landscapes during Cell Differentiation and Reprogramming. Cell Rep. 2020;32:107870. doi: 10.1016/j.celrep.2020.107870. PubMed DOI
Wang K., Wang H., Li C., Yin Z., Xiao R., Li Q., Xiang Y., Wang W., Huang J., Chen L., et al. Genomic Profiling of Native R Loops with a DNA-RNA Hybrid Recognition Sensor. Sci. Adv. 2017;7:eabe3516. doi: 10.1126/sciadv.abe3516. PubMed DOI PMC
Sanz L.A., Castillo-Guzman D., Chédin F. Mapping R-Loops and RNA:DNA Hybrids with S9.6-Based Immunoprecipitation Methods. JoVE J. Vis. Exp. 2021;174:e62455. doi: 10.3791/62455. PubMed DOI PMC
Guo M.S., Kawamura R., Littlehale M.L., Marko J.F., Laub M.T. High-Resolution, Genome-Wide Mapping of Positive Supercoiling in Chromosomes. eLife. 2021;10:e67236. doi: 10.7554/eLife.67236. PubMed DOI PMC
Sanz L.A., Chédin F. High-Resolution, Strand-Specific R-Loop Mapping via S9.6-Based DNA-RNA Immunoprecipitation and High-Throughput Sequencing. Nat. Protoc. 2019;14:1734–1755. doi: 10.1038/s41596-019-0159-1. PubMed DOI PMC
Russo M., De Lucca B., Flati T., Gioiosa S., Chillemi G., Capranico G. DROPA: DRIP-Seq Optimized Peak Annotator. BMC Bioinformatics. 2019;20:414. doi: 10.1186/s12859-019-3009-9. PubMed DOI PMC
Zhang P., Feng Y., Wei H., Zhang W. R-Loop Identification and Profiling in Plants. Trends Plant Sci. 2019;24:971–972. doi: 10.1016/j.tplants.2019.07.010. PubMed DOI
Nadel J., Athanasiadou R., Lemetre C., Wijetunga N.A., Broin Ó.P., Sato H., Zhang Z., Jeddeloh J., Montagna C., Golden A., et al. RNA:DNA Hybrids in the Human Genome Have Distinctive Nucleotide Characteristics, Chromatin Composition, and Transcriptional Relationships. Epigenet. Chromatin. 2015;8:46. doi: 10.1186/s13072-015-0040-6. PubMed DOI PMC
Special Issue "Bioinformatics of Unusual DNA and RNA Structures"