Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells

. 2024 Oct 28 ; 14 (1) : 25815. [epub] 20241028

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39468126

Grantová podpora
GACR-21-06873S Grantová Agentura České Republiky
GACR-21-06873S Grantová Agentura České Republiky
GACR-21-06873S Grantová Agentura České Republiky
GACR-21-06873S Grantová Agentura České Republiky
NU20J-08-00018 Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018 Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018 Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018 Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018 Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 39468126
PubMed Central PMC11519472
DOI 10.1038/s41598-024-73943-2
PII: 10.1038/s41598-024-73943-2
Knihovny.cz E-zdroje

Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.

Zobrazit více v PubMed

Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer. 21, 481–499 (2021). PubMed PMC

Raudenska, M., Balvan, J. & Masarik, M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol. Cancer. 20, 140 (2021). PubMed PMC

Zhao, J., Zhai, B., Gygi, S. P. & Goldberg, A. L. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proceedings of the National Academy of Sciences 112, 15790–15797 (2015). PubMed PMC

Tan, H. W. S., Sim, A. Y. L. & Long, Y. C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun.8, 338 (2017). PubMed PMC

Zhu, Y. et al. L-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells. Amino Acids. 47, 2185–2197 (2015). PubMed

Hanelova, K. et al. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles. Cell Communication Signaling: CCS21, (2023). PubMed PMC

Li, N. & Neu, J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J. Nutr.139, 710–714 (2009). PubMed PMC

Shin, S. et al. mTOR inhibition reprograms cellular proteostasis by regulating eIF3D-mediated selective mRNA translation and promotes cell phenotype switching. Cell. Rep.42, 112868 (2023). PubMed PMC

Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl. Acad. Sci. U S A. 110, 7312–7317 (2013). PubMed PMC

Zou, W. et al. Exosome Release is regulated by mTORC1. Adv. Sci.6, 1801313 (2019). PubMed PMC

Palikaras, K., Lionaki, E. & Tavernarakis, N. Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell. Death Differ.22, 1399–1401 (2015). PubMed PMC

Marini, C. et al. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci. Rep.6, 19569 (2016). PubMed PMC

Lima, L. G. et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat. Commun.12, 3543 (2021). PubMed PMC

Hönigova, K. et al. Metabolic tricks of cancer cells. Biochim. Biophys. Acta Rev. Cancer. 1877, 188705 (2022). PubMed

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012). PubMed PMC

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120 (2014). PubMed PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013). PubMed PMC

Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 28, 2184–2185 (2012). PubMed

Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 32, 292–294 (2016). PubMed PMC

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923–930 (2014). PubMed

Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC

Wickham, H. et al. Welcome to the Tidyverse. J. Open. Source Softw.4, 1686 (2019).

Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. (Camb). 2, 100141 (2021). PubMed PMC

Wickham, H. ggplot2. WIREs Computational Statistics 3, 180–185 (2011).

O’Donovan, T. R., O’Sullivan, G. C. & McKenna, S. L. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy. 7, 509–524 (2011). PubMed PMC

Jena, B. C., Rout, L., Dey, A. & Mandal, M. Active autophagy in cancer-associated fibroblasts: recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J. Cell. Physiol.236, 7887–7902 (2021). PubMed

Bustos, S. O., Antunes, F., Rangel, M. C. & Chammas, R. Emerging autophagy functions shape the Tumor Microenvironment and play a role in Cancer Progression - implications for Cancer Therapy. Front. Oncol.10, 606436 (2020). PubMed PMC

Makinoshima, H. et al. Signaling through the phosphatidylinositol 3-Kinase (PI3K)/Mammalian target of Rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in Epidermal Growth Factor Receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem.290, 17495–17504 (2015). PubMed PMC

Yecies, J. L. & Manning, B. D. Transcriptional Control of Cellular Metabolism by mTOR Signaling. Cancer Res.71, 2815–2820 (2011). PubMed PMC

Morita, M. et al. mTORC1 controls mitochondrial activity and Biogenesis through 4E-BP-Dependent translational regulation. Cell Metabol.18, 698–711 (2013). PubMed

Liang, H. et al. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem. Biophys. Res. Commun.356, 893–898 (2007). PubMed

Wu, S., Zhou, F., Zhang, Z. & Xing, D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission–fusion proteins. FEBS J.278, 941–954 (2011). PubMed

Gwangwa, M. V., Joubert, A. M. & Visagie, M. H. Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines. Biol. Res.52, 15 (2019). PubMed PMC

Prasad, P., Ghosh, S. & Roy, S. S. Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation. Cell. Mol. Life Sci.78, 4821–4845 (2021). PubMed PMC

Abdullah, M. O. et al. Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids. Cell. Rep.40, 111198 (2022). PubMed

Peltanová, B. et al. mRNA subtype of Cancer-Associated fibroblasts significantly affects key characteristics of Head and Neck Cancer cells. Cancers (Basel). 14, 2286 (2022). PubMed PMC

Feng, L. et al. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl Med.19, 367 (2021). PubMed PMC

Liu, J. et al. Nrf2 and its dependent autophagy activation cooperatively counteract ferroptosis to alleviate acute liver injury. Pharmacol. Res.187, 106563 (2023). PubMed

Chintala, S. et al. Downregulation of Cystine Transporter xc– by Irinotecan in Human Head and Neck Cancer FaDu xenografts. Chemotherapy. 56, 223–233 (2010). PubMed PMC

Zhang, C. et al. Crosstalk between ferroptosis and stress—implications in cancer therapeutic responses. Cancer Innov.1, 92–113 (2022). PubMed PMC

Field, J. T. & Gordon, J. W. BNIP3 and Nix: atypical regulators of cell fate. Biochimica et Biophys. Acta (BBA) - Molecular Cell. Research. 1869, 119325 (2022). PubMed

Landes, T. et al. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep.11, 459–465 (2010). PubMed PMC

Rikka, S. et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell. Death Differ.18, 721–731 (2011). PubMed PMC

Ma, Z. et al. BNIP3 induces apoptosis and protective autophagy under hypoxia in esophageal squamous cell carcinoma cell lines: BNIP3 regulates cell death. Dis. Esophagus. 30, 1–8 (2017). PubMed

Garrus, J. E. et al. Tsg101 and the Vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 107, 55–65 (2001). PubMed

Malerød, L. et al. Cargo-Dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting. Traffic. 12, 1211–1226 (2011). PubMed

Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun.14, 5031 (2023). PubMed PMC

Tufan, A. B. et al. TSG101 associates with PARP1 and is essential for PARylation and DNA damage-induced NF‐κB activation. EMBO J.41, e110372 (2022). PubMed PMC

Püschel, F. et al. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc. Natl. Acad. Sci.117, 9932–9941 (2020). PubMed PMC

Nagasaki, T. et al. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Br. J. Cancer. 110, 469–478 (2014). PubMed PMC

Wang, Y., van Boxel-Dezaire, A. H. H., Cheon, H., Yang, J. & Stark, G. R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc. Natl. Acad. Sci.110, 16975–16980 (2013). PubMed PMC

Matsui, S. et al. Interleukin-13 and its signaling pathway is associated with obesity-related colorectal tumorigenesis. Cancer Sci.110, 2156–2165 (2019). PubMed PMC

Goldie, S. J. et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell. Death Dis.9, 1–12 (2018). PubMed PMC

Aldinucci, D., Borghese, C. & Casagrande, N. The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel). 12, 1765 (2020). PubMed PMC

Tyner, J. W. et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med.11, 1180–1187 (2005). PubMed PMC

Bae, J. Y. et al. Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression. Neoplasia. 16, 928–938 (2014). PubMed PMC

Pongas, G. & Fojo, T. BEZ235: when Promising Science meets clinical reality. Oncologist. 21, 1033–1034 (2016). PubMed PMC

Principe, S., Zapater-Latorre, E., Arribas, L., Garcia-Miragall, E. & Bagan, J. Salivary IL-8 as a putative predictive biomarker of radiotherapy response in head and neck cancer patients. Clin. Oral Investig. 26, 437–448 (2022). PubMed PMC

Sonis, S. T. Oral Mucositis in Head and Neck Cancer: Risk, Biology, and Management. Am Soc Clin Oncol Educ Book e236–e240 doi: (2013). 10.14694/EdBook_AM.2013.33.e236 PubMed

Thornton, C. P., Kozachik, S. & Ruble, K. Study protocol to evaluate influences of stress and inflammation on Mucositis in adolescents and Young adults with Cancer. Nurs. Res.71, 404–410 (2022). PubMed PMC

Fader, C. M., Sánchez, D., Furlán, M. & Colombo, M. I. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 9, 230–250 (2008). PubMed

Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles. 2, 20677 (2013). PubMed PMC

Dohl, J. et al. Glutamine depletion disrupts mitochondrial integrity and impairs C2C12 myoblast proliferation, differentiation, and the heat-shock response. Nutr. Res.84, 42–52 (2020). PubMed

Yang, J. et al. Targeting cellular metabolism to reduce head and neck cancer growth. Sci. Rep.9, 4995 (2019). PubMed PMC

Puhm, F. et al. Mitochondria are a subset of Extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circul. Res.125, 43–52 (2019). PubMed

Sansone, P. et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the National Academy of Sciences 114, E9066–E9075 (2017). PubMed PMC

Lin, X., Zhou, W., Liu, Z., Cao, W. & Lin, C. Targeting cellular metabolism in head and neck cancer precision medicine era: a promising strategy to overcome therapy resistance. Oral Dis.29, 3101–3120 (2023). PubMed

Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods. 14, 228–232 (2017). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...