Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR-21-06873S
Grantová Agentura České Republiky
GACR-21-06873S
Grantová Agentura České Republiky
GACR-21-06873S
Grantová Agentura České Republiky
GACR-21-06873S
Grantová Agentura České Republiky
NU20J-08-00018
Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018
Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018
Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018
Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018
Ministerstvo Zdravotnictví Ceské Republiky
NU20J-08-00018
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
39468126
PubMed Central
PMC11519472
DOI
10.1038/s41598-024-73943-2
PII: 10.1038/s41598-024-73943-2
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát * metabolismus MeSH
- autofagie * účinky léků MeSH
- dlaždicobuněčné karcinomy hlavy a krku metabolismus genetika patologie MeSH
- extracelulární vezikuly * metabolismus účinky léků MeSH
- glutamin * metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory hlavy a krku metabolismus patologie genetika MeSH
- oxidační stres * MeSH
- RNA mitochondriální * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát * MeSH
- glutamin * MeSH
- RNA mitochondriální * MeSH
Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.
Zobrazit více v PubMed
Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer. 21, 481–499 (2021). PubMed PMC
Raudenska, M., Balvan, J. & Masarik, M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol. Cancer. 20, 140 (2021). PubMed PMC
Zhao, J., Zhai, B., Gygi, S. P. & Goldberg, A. L. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proceedings of the National Academy of Sciences 112, 15790–15797 (2015). PubMed PMC
Tan, H. W. S., Sim, A. Y. L. & Long, Y. C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun.8, 338 (2017). PubMed PMC
Zhu, Y. et al. L-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells. Amino Acids. 47, 2185–2197 (2015). PubMed
Hanelova, K. et al. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles. Cell Communication Signaling: CCS21, (2023). PubMed PMC
Li, N. & Neu, J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J. Nutr.139, 710–714 (2009). PubMed PMC
Shin, S. et al. mTOR inhibition reprograms cellular proteostasis by regulating eIF3D-mediated selective mRNA translation and promotes cell phenotype switching. Cell. Rep.42, 112868 (2023). PubMed PMC
Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl. Acad. Sci. U S A. 110, 7312–7317 (2013). PubMed PMC
Zou, W. et al. Exosome Release is regulated by mTORC1. Adv. Sci.6, 1801313 (2019). PubMed PMC
Palikaras, K., Lionaki, E. & Tavernarakis, N. Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell. Death Differ.22, 1399–1401 (2015). PubMed PMC
Marini, C. et al. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci. Rep.6, 19569 (2016). PubMed PMC
Lima, L. G. et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat. Commun.12, 3543 (2021). PubMed PMC
Hönigova, K. et al. Metabolic tricks of cancer cells. Biochim. Biophys. Acta Rev. Cancer. 1877, 188705 (2022). PubMed
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012). PubMed PMC
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120 (2014). PubMed PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013). PubMed PMC
Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 28, 2184–2185 (2012). PubMed
Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 32, 292–294 (2016). PubMed PMC
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923–930 (2014). PubMed
Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC
Wickham, H. et al. Welcome to the Tidyverse. J. Open. Source Softw.4, 1686 (2019).
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. (Camb). 2, 100141 (2021). PubMed PMC
Wickham, H. ggplot2. WIREs Computational Statistics 3, 180–185 (2011).
O’Donovan, T. R., O’Sullivan, G. C. & McKenna, S. L. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy. 7, 509–524 (2011). PubMed PMC
Jena, B. C., Rout, L., Dey, A. & Mandal, M. Active autophagy in cancer-associated fibroblasts: recent advances in understanding the novel mechanism of tumor progression and therapeutic response. J. Cell. Physiol.236, 7887–7902 (2021). PubMed
Bustos, S. O., Antunes, F., Rangel, M. C. & Chammas, R. Emerging autophagy functions shape the Tumor Microenvironment and play a role in Cancer Progression - implications for Cancer Therapy. Front. Oncol.10, 606436 (2020). PubMed PMC
Makinoshima, H. et al. Signaling through the phosphatidylinositol 3-Kinase (PI3K)/Mammalian target of Rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in Epidermal Growth Factor Receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem.290, 17495–17504 (2015). PubMed PMC
Yecies, J. L. & Manning, B. D. Transcriptional Control of Cellular Metabolism by mTOR Signaling. Cancer Res.71, 2815–2820 (2011). PubMed PMC
Morita, M. et al. mTORC1 controls mitochondrial activity and Biogenesis through 4E-BP-Dependent translational regulation. Cell Metabol.18, 698–711 (2013). PubMed
Liang, H. et al. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem. Biophys. Res. Commun.356, 893–898 (2007). PubMed
Wu, S., Zhou, F., Zhang, Z. & Xing, D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission–fusion proteins. FEBS J.278, 941–954 (2011). PubMed
Gwangwa, M. V., Joubert, A. M. & Visagie, M. H. Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines. Biol. Res.52, 15 (2019). PubMed PMC
Prasad, P., Ghosh, S. & Roy, S. S. Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation. Cell. Mol. Life Sci.78, 4821–4845 (2021). PubMed PMC
Abdullah, M. O. et al. Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids. Cell. Rep.40, 111198 (2022). PubMed
Peltanová, B. et al. mRNA subtype of Cancer-Associated fibroblasts significantly affects key characteristics of Head and Neck Cancer cells. Cancers (Basel). 14, 2286 (2022). PubMed PMC
Feng, L. et al. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J. Transl Med.19, 367 (2021). PubMed PMC
Liu, J. et al. Nrf2 and its dependent autophagy activation cooperatively counteract ferroptosis to alleviate acute liver injury. Pharmacol. Res.187, 106563 (2023). PubMed
Chintala, S. et al. Downregulation of Cystine Transporter xc– by Irinotecan in Human Head and Neck Cancer FaDu xenografts. Chemotherapy. 56, 223–233 (2010). PubMed PMC
Zhang, C. et al. Crosstalk between ferroptosis and stress—implications in cancer therapeutic responses. Cancer Innov.1, 92–113 (2022). PubMed PMC
Field, J. T. & Gordon, J. W. BNIP3 and Nix: atypical regulators of cell fate. Biochimica et Biophys. Acta (BBA) - Molecular Cell. Research. 1869, 119325 (2022). PubMed
Landes, T. et al. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep.11, 459–465 (2010). PubMed PMC
Rikka, S. et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell. Death Differ.18, 721–731 (2011). PubMed PMC
Ma, Z. et al. BNIP3 induces apoptosis and protective autophagy under hypoxia in esophageal squamous cell carcinoma cell lines: BNIP3 regulates cell death. Dis. Esophagus. 30, 1–8 (2017). PubMed
Garrus, J. E. et al. Tsg101 and the Vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 107, 55–65 (2001). PubMed
Malerød, L. et al. Cargo-Dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting. Traffic. 12, 1211–1226 (2011). PubMed
Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun.14, 5031 (2023). PubMed PMC
Tufan, A. B. et al. TSG101 associates with PARP1 and is essential for PARylation and DNA damage-induced NF‐κB activation. EMBO J.41, e110372 (2022). PubMed PMC
Püschel, F. et al. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc. Natl. Acad. Sci.117, 9932–9941 (2020). PubMed PMC
Nagasaki, T. et al. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Br. J. Cancer. 110, 469–478 (2014). PubMed PMC
Wang, Y., van Boxel-Dezaire, A. H. H., Cheon, H., Yang, J. & Stark, G. R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc. Natl. Acad. Sci.110, 16975–16980 (2013). PubMed PMC
Matsui, S. et al. Interleukin-13 and its signaling pathway is associated with obesity-related colorectal tumorigenesis. Cancer Sci.110, 2156–2165 (2019). PubMed PMC
Goldie, S. J. et al. Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell. Death Dis.9, 1–12 (2018). PubMed PMC
Aldinucci, D., Borghese, C. & Casagrande, N. The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel). 12, 1765 (2020). PubMed PMC
Tyner, J. W. et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med.11, 1180–1187 (2005). PubMed PMC
Bae, J. Y. et al. Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression. Neoplasia. 16, 928–938 (2014). PubMed PMC
Pongas, G. & Fojo, T. BEZ235: when Promising Science meets clinical reality. Oncologist. 21, 1033–1034 (2016). PubMed PMC
Principe, S., Zapater-Latorre, E., Arribas, L., Garcia-Miragall, E. & Bagan, J. Salivary IL-8 as a putative predictive biomarker of radiotherapy response in head and neck cancer patients. Clin. Oral Investig. 26, 437–448 (2022). PubMed PMC
Sonis, S. T. Oral Mucositis in Head and Neck Cancer: Risk, Biology, and Management. Am Soc Clin Oncol Educ Book e236–e240 doi: (2013). 10.14694/EdBook_AM.2013.33.e236 PubMed
Thornton, C. P., Kozachik, S. & Ruble, K. Study protocol to evaluate influences of stress and inflammation on Mucositis in adolescents and Young adults with Cancer. Nurs. Res.71, 404–410 (2022). PubMed PMC
Fader, C. M., Sánchez, D., Furlán, M. & Colombo, M. I. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 9, 230–250 (2008). PubMed
Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles. 2, 20677 (2013). PubMed PMC
Dohl, J. et al. Glutamine depletion disrupts mitochondrial integrity and impairs C2C12 myoblast proliferation, differentiation, and the heat-shock response. Nutr. Res.84, 42–52 (2020). PubMed
Yang, J. et al. Targeting cellular metabolism to reduce head and neck cancer growth. Sci. Rep.9, 4995 (2019). PubMed PMC
Puhm, F. et al. Mitochondria are a subset of Extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circul. Res.125, 43–52 (2019). PubMed
Sansone, P. et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the National Academy of Sciences 114, E9066–E9075 (2017). PubMed PMC
Lin, X., Zhou, W., Liu, Z., Cao, W. & Lin, C. Targeting cellular metabolism in head and neck cancer precision medicine era: a promising strategy to overcome therapy resistance. Oral Dis.29, 3101–3120 (2023). PubMed
Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods. 14, 228–232 (2017). PubMed