Special Issue "Bioinformatics of Unusual DNA and RNA Structures"
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky, úvodní články
Grantová podpora
CZ.10.03.01/00/22_003/0000003
Operational Programme Just Transition, European Union
PubMed
38791265
PubMed Central
PMC11121459
DOI
10.3390/ijms25105226
PII: ijms25105226
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie metabolismus MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- RNA * chemie metabolismus MeSH
- výpočetní biologie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodní články MeSH
- úvodníky MeSH
- Názvy látek
- DNA * MeSH
- RNA * MeSH
Nucleic acids are not only static carriers of genetic information but also play vital roles in controlling cellular lifecycles through their fascinating structural diversity [...].
Zobrazit více v PubMed
Zimmer C., Marck C., Guschlbauer W. Z-DNA and Other non-B-DNA Structures Are Reversed to B-DNA by Interaction with Netropsin. FEBS Lett. 1983;154:156–160. doi: 10.1016/0014-5793(83)80894-1. PubMed DOI
Rich A. Right-Handed and Left-Handed DNA: Conformational Information in Genetic Material. Cold Spring Harb. Symp. Quant. Biol. 1983;47:1–12. doi: 10.1101/SQB.1983.047.01.003. PubMed DOI
Conner B.N., Takano T., Tanaka S., Itakura K., Dickerson R.E. The Molecular Structure of d (ICpCpGpG), a Fragment of Right-Handed Double Helical A-DNA. Nature. 1982;295:294–299. doi: 10.1038/295294a0. PubMed DOI
Frank-Kamenetskii M.D., Mirkin S.M. Triplex DNA Structures. Annu. Rev. Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. PubMed DOI
Sundquist W.I., Klug A. Telomeric DNA Dimerizes by Formation of Guanine Tetrads between Hairpin Loops. Nature. 1989;342:825–829. doi: 10.1038/342825a0. PubMed DOI
Kim M.-Y., Gleason-Guzman M., Izbicka E., Nishioka D., Hurley L.H. The Different Biological Effects of Telomestatin and TMPyP4 Can Be Attributed to Their Selectivity for Interaction with Intramolecular or Intermolecular G-Quadruplex Structures. Cancer Res. 2003;63:3247–3256. PubMed
James P.L., Brown T., Fox K.R. Thermodynamic and Kinetic Stability of Intermolecular Triple Helices Containing Different Proportions of C+·GC and T·AT Triplets. Nucleic Acids Res. 2003;31:5598–5606. doi: 10.1093/nar/gkg782. PubMed DOI PMC
Waters J.T., Lu X.-J., Galindo-Murillo R., Gumbart J.C., Kim H.D., Cheatham T.E.I., Harvey S.C. Transitions of Double-Stranded DNA between the A- and B-Forms. J. Phys. Chem. B. 2016;120:8449–8456. doi: 10.1021/acs.jpcb.6b02155. PubMed DOI PMC
Tang Q. Z-Nucleic Acids: Uncovering the Functions from Past to Present. Eur. J. Immunol. 2022;52:1700–1711. doi: 10.1002/eji.202249968. PubMed DOI PMC
Holder I.T., Wagner S., Xiong P., Sinn M., Frickey T., Meyer A., Hartig J.S. Intrastrand Triplex DNA Repeats in Bacteria: A Source of Genomic Instability. Nucleic Acids Res. 2015;43:10126–10142. doi: 10.1093/nar/gkv1017. PubMed DOI PMC
Paugh S.W., Coss D.R., Bao J., Laudermilk L.T., Grace C.R., Ferreira A.M., Waddell M.B., Ridout G., Naeve D., Leuze M., et al. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via Which microRNAs Could Directly Alter Gene Expression. PLoS Comput. Biol. 2016;12:e1004744. doi: 10.1371/journal.pcbi.1004744. PubMed DOI PMC
Li Y., Syed J., Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem. Biol. 2016;23:1325–1333. doi: 10.1016/j.chembiol.2016.09.011. PubMed DOI
Sengupta P., Bose D., Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-Motif in the Human Genome. ChemBioChem. 2021;22:1517–1537. doi: 10.1002/cbic.202000703. PubMed DOI
Sollier J., Cimprich K.A. Breaking Bad: R-Loops and Genome Integrity. Trends Cell Biol. 2015;25:514–522. doi: 10.1016/j.tcb.2015.05.003. PubMed DOI PMC
Inagaki H., Ohye T., Kogo H., Tsutsumi M., Kato T., Tong M., Emanuel B.S., Kurahashi H. Two Sequential Cleavage Reactions on Cruciform DNA Structures Cause Palindrome-Mediated Chromosomal Translocations. Nat. Commun. 2013;4:1592. doi: 10.1038/ncomms2595. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Jovin T.M. Z-DNA: Methods and Protocols. Springer; Berlin/Heidelberg, Germany: 2023. The Origin of Left-Handed Poly[d(G-C)] PubMed
Herbert A. Z-DNA and Z-RNA in Human Disease. Commun. Biol. 2019;2:7. doi: 10.1038/s42003-018-0237-x. PubMed DOI PMC
Chiang D.C., Li Y., Ng S.K. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front. Immunol. 2021;11:3779. doi: 10.3389/fimmu.2020.625504. PubMed DOI PMC
Herbert A. Z-DNA: Methods and Protocols. Springer; Berlin/Heidelberg, Germany: 2023. Z-DNA and Z-RNA: Methods—Past and Future; pp. 295–329. PubMed
Song Q., Fan Y., Zhang H., Wang N. Z-DNA Binding Protein 1 Orchestrates Innate Immunity and Inflammatory Cell Death. Cytokine Growth Factor Rev. 2024 doi: 10.1016/j.cytogfr.2024.03.005. PubMed DOI
Sun L., Miao Y., Wang Z., Chen H., Dong P., Zhang H., Wu L., Jiang M., Chen L., Yang W., et al. Structural Insight into African Swine Fever Virus I73R Protein Reveals It as a Z-DNA Binding Protein. Transbound. Emerg. Dis. 2022;69:e1923–e1935. doi: 10.1111/tbed.14527. PubMed DOI
Kim C. How Z-DNA/RNA Binding Proteins Shape Homeostasis, Inflammation, and Immunity. BMB Rep. 2020;53:453–457. doi: 10.5483/BMBRep.2020.53.9.141. PubMed DOI PMC
Zhang J., Fakharzadeh A., Pan F., Roland C., Sagui C. Atypical Structures of GAA/TTC Trinucleotide Repeats Underlying Friedreich’s Ataxia: DNA Triplexes and RNA/DNA Hybrids. Nucleic Acids Res. 2020;48:9899–9917. doi: 10.1093/nar/gkaa665. PubMed DOI PMC
Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. MMBR. 2020;85:e00110-20. doi: 10.1128/MMBR.00110-20. PubMed DOI PMC
San Martin-Alonso M., Soler-Oliva M.E., García-Rubio M., García-Muse T., Aguilera A. Harmful R-Loops Are Prevented via Different Cell Cycle-Specific Mechanisms. Nat. Commun. 2021;12:4451. doi: 10.1038/s41467-021-24737-x. PubMed DOI PMC
Ngo G.H.P., Grimstead J.W., Baird D.M. UPF1 Promotes the Formation of R Loops to Stimulate DNA Double-Strand Break Repair. Nat. Commun. 2021;12:3849. doi: 10.1038/s41467-021-24201-w. PubMed DOI PMC
Mackay R.P., Xu Q., Weinberger P.M. R-Loop Physiology and Pathology: A Brief Review. DNA Cell Biol. 2020;39:1914–1925. doi: 10.1089/dna.2020.5906. PubMed DOI
Prorok P., Artufel M., Aze A., Coulombe P., Peiffer I., Lacroix L., Guédin A., Mergny J.-L., Damaschke J., Schepers A., et al. Involvement of G-Quadruplex Regions in Mammalian Replication Origin Activity. Nat. Commun. 2019;10:3274. doi: 10.1038/s41467-019-11104-0. PubMed DOI PMC
Esain-Garcia I., Kirchner A., Melidis L., Tavares R.d.C.A., Dhir S., Simeone A., Yu Z., Madden S.K., Hermann R., Tannahill D., et al. G-Quadruplex DNA Structure Is a Positive Regulator of MYC Transcription. Proc. Natl. Acad. Sci. USA. 2024;121:e2320240121. doi: 10.1073/pnas.2320240121. PubMed DOI PMC
Maltby C.J., Schofield J.P.R., Houghton S.D., O’Kelly I., Vargas-Caballero M., Deinhardt K., Coldwell M.J. A 5′ UTR GGN Repeat Controls Localisation and Translation of a Potassium Leak Channel mRNA through G-Quadruplex Formation. Nucleic Acids Res. 2020;48:9822–9839. doi: 10.1093/nar/gkaa699. PubMed DOI PMC
Mei Y., Deng Z., Vladimirova O., Gulve N., Johnson F.B., Drosopoulos W.C., Schildkraut C.L., Lieberman P.M. TERRA G-Quadruplex RNA Interaction with TRF2 GAR Domain Is Required for Telomere Integrity. Sci. Rep. 2021;11:3509. doi: 10.1038/s41598-021-82406-x. PubMed DOI PMC
Tassinari M., Richter S.N., Gandellini P. Biological Relevance and Therapeutic Potential of G-Quadruplex Structures in the Human Noncoding Transcriptome. Nucleic Acids Res. 2021;49:3617–3633. doi: 10.1093/nar/gkab127. PubMed DOI PMC
Kharel P., Balaratnam S., Beals N., Basu S. The Role of RNA G-Quadruplexes in Human Diseases and Therapeutic Strategies. Wiley Interdiscip. Rev. RNA. 2020;11:e1568. doi: 10.1002/wrna.1568. PubMed DOI
Zyner K.G., Simeone A., Flynn S.M., Doyle C., Marsico G., Adhikari S., Portella G., Tannahill D., Balasubramanian S. G-Quadruplex DNA Structures in Human Stem Cells and Differentiation. Nat. Commun. 2022;13:142. doi: 10.1038/s41467-021-27719-1. PubMed DOI PMC
Zanin I., Ruggiero E., Nicoletto G., Lago S., Maurizio I., Gallina I., Richter S.N. Genome-Wide Mapping of i-Motifs Reveals Their Association with Transcription Regulation in Live Human Cells. Nucleic Acids Res. 2023;51:8309–8321. doi: 10.1093/nar/gkad626. PubMed DOI PMC
Wang B. The RNA I-Motif in the Primordial RNA World. Orig. Life Evol. Biosph. 2019;49:105–109. doi: 10.1007/s11084-019-09576-7. PubMed DOI
Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Fleming A.M., Zhu J., Jara-Espejo M., Burrows C.J. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2′-Deoxyguanosine. Biochemistry. 2020;59:2616–2626. doi: 10.1021/acs.biochem.0c00387. PubMed DOI
Mengoli V., Ceppi I., Sanchez A., Cannavo E., Halder S., Scaglione S., Gaillard P., McHugh P.J., Riesen N., Pettazzoni P., et al. WRN Helicase and Mismatch Repair Complexes Independently and Synergistically Disrupt Cruciform DNA Structures. EMBO J. 2023;42:e111998. doi: 10.15252/embj.2022111998. PubMed DOI PMC
Goswami P., Bartas M., Lexa M., Bohálová N., Volná A., Červeň J., Červeňová V., Pečinka P., Špunda V., Fojta M. SARS-CoV-2 Hot-Spot Mutations Are Significantly Enriched within Inverted Repeats and CpG Island Loci. Brief. Bioinform. 2021;22:1338–1345. doi: 10.1093/bib/bbaa385. PubMed DOI PMC
Bartas M., Goswami P., Lexa M., Červeň J., Volná A., Fojta M., Brázda V., Pečinka P. Letter to the Editor: Significant Mutation Enrichment in Inverted Repeat Sites of New SARS-CoV-2 Strains. Brief. Bioinform. 2021;22:bbab129. doi: 10.1093/bib/bbab129. PubMed DOI PMC
Chaput J.C., Switzer C. A DNA Pentaplex Incorporating Nucleobase Quintets. Proc. Natl. Acad. Sci. USA. 1999;96:10614–10619. doi: 10.1073/pnas.96.19.10614. PubMed DOI PMC
Makova K.D., Weissensteiner M.H. Noncanonical DNA Structures Are Drivers of Genome Evolution. Trends Genet. 2023;39:109–124. doi: 10.1016/j.tig.2022.11.005. PubMed DOI PMC
Brázda V., Kolomazník J., Lỳsek J., Bartas M., Fojta M., Št’astnỳ J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Brázda V., Havlík J., Kolomazník J., Trenz O., Št’astnỳ J. R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences. Int. J. Mol. Sci. 2021;22:12857. doi: 10.3390/ijms222312857. PubMed DOI PMC
Hennecker C., Yamout L., Zhang C., Zhao C., Hiraki D., Moitessier N., Mittermaier A. Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int. J. Mol. Sci. 2022;23:16020. doi: 10.3390/ijms232416020. PubMed DOI PMC
Singh D., Desai N., Shah V., Datta B. In Silico Identification of Potential Quadruplex Forming Sequences in LncRNAs of Cervical Cancer. Int. J. Mol. Sci. 2023;24:12658. doi: 10.3390/ijms241612658. PubMed DOI PMC
Nicoletto G., Richter S.N., Frasson I. Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans. Int. J. Mol. Sci. 2023;24:9523. doi: 10.3390/ijms24119523. PubMed DOI PMC
Gould E., Pettersson J., Higgs S., Charrel R., de Lamballerie X. Emerging Arboviruses: Why Today? One Health. 2017;4:1–13. doi: 10.1016/j.onehlt.2017.06.001. PubMed DOI PMC
Gumina J.M., Richardson A.E., Shojiv M.H., Chambers A.E., Sandwith S.N., Reisinger M.A., Karns T.J., Osborne T.L., Alashi H.N., Anderson Q.T., et al. Differential Gene Expression Following DHX36/G4R1 Knockout Is Associated with G-Quadruplex Content and Cancer. Int. J. Mol. Sci. 2024;25:1753. doi: 10.3390/ijms25031753. PubMed DOI PMC
Feng Y., Luo Z., Huang R., Yang X., Cheng X., Zhang W. Epigenomic Features and Potential Functions of K+ and Na+ Favorable DNA G-Quadruplexes in Rice. Int. J. Mol. Sci. 2022;23:8404. doi: 10.3390/ijms23158404. PubMed DOI PMC
Shavkunov K.S., Markelova N.Y., Glazunova O.A., Kolzhetsov N.P., Panyukov V.V., Ozoline O.N. The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia Coli. Int. J. Mol. Sci. 2023;24:12960. doi: 10.3390/ijms241612960. PubMed DOI PMC
Zulfiqar S., Farooq M.A., Zhao T., Wang P., Tabusam J., Wang Y., Xuan S., Zhao J., Chen X., Shen S., et al. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int. J. Mol. Sci. 2023;24:5608. doi: 10.3390/ijms24065608. PubMed DOI PMC
Zhong H.-S., Dong M.-J., Gao F. G4Bank: A Database of Experimentally Identified DNA G-Quadruplex Sequences. Interdiscip. Sci. Comput. Life. Sci. 2023;15:515–523. doi: 10.1007/s12539-023-00577-9. PubMed DOI
Elimelech-Zohar K., Orenstein Y. An Overview on Nucleic-Acid G-Quadruplex Prediction: From Rule-Based Methods to Deep Neural Networks. Brief. Bioinform. 2023;24:bbad252. doi: 10.1093/bib/bbad252. PubMed DOI
Cer R.Z., Donohue D.E., Mudunuri U.S., Temiz N.A., Loss M.A., Starner N.J., Halusa G.N., Volfovsky N., Yi M., Luke B.T. Non-B DB v2. 0: A Database of Predicted Non-B DNA-Forming Motifs and Its Associated Tools. Nucleic Acids Res. 2012;41:D94–D100. doi: 10.1093/nar/gks955. PubMed DOI PMC
Luo Y., Granzhan A., Marquevielle J., Cucchiarini A., Lacroix L., Amrane S., Verga D., Mergny J.-L. Guidelines for G-Quadruplexes: I. In Vitro Characterization. Biochimie. 2023;214:5–23. doi: 10.1016/j.biochi.2022.12.019. PubMed DOI
Xu Q., Kowalski J. NBBC: A Non-B DNA Burden Explorer in Cancer. Nucleic Acids Res. 2023;51:W357–W364. doi: 10.1093/nar/gkad379. PubMed DOI PMC
Matos-Rodrigues G., Hisey J.A., Nussenzweig A., Mirkin S.M. Detection of Alternative DNA Structures and Its Implications for Human Disease. Mol. Cell. 2023;83:3622–3641. doi: 10.1016/j.molcel.2023.08.018. PubMed DOI
Frappier L., Price G.B., Martin R.G., Zannis-Hadjopoulos M. Monoclonal Antibodies to Cruciform DNA Structures. J. Mol. Biol. 1987;193:751–758. doi: 10.1016/0022-2836(87)90356-1. PubMed DOI
Feng X., Xie F.-Y., Ou X.-H., Ma J.-Y. Cruciform DNA in Mouse Growing Oocytes: Its Dynamics and Its Relationship with DNA Transcription. PLoS ONE. 2020;15:e0240844. doi: 10.1371/journal.pone.0240844. PubMed DOI PMC
Yin C., Zhang T., Balachandran S. Detecting Z-RNA and Z-DNA in Mammalian Cells. In: Kim K.K., Subramani V.K., editors. Z-DNA. Volume 2651. Springer; New York, NY, USA: 2023. pp. 277–284. Methods in Molecular Biology. PubMed
Javadekar S.M., Nilavar N.M., Paranjape A., Das K., Raghavan S.C. Characterization of G-Quadruplex Antibody Reveals Differential Specificity for G4 DNA Forms. DNA Res. 2020;27:dsaa024. doi: 10.1093/dnares/dsaa024. PubMed DOI PMC
Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D. I-Motif DNA Structures Are Formed in the Nuclei of Human Cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI
Weissensteiner M.H., Cremona M.A., Guiblet W.M., Stoler N., Harris R.S., Cechova M., Eckert K.A., Chiaromonte F., Huang Y.-F., Makova K.D. Accurate Sequencing of DNA Motifs Able to Form Alternative (Non-B) Structures. Genome Res. 2023;33:907–922. doi: 10.1101/gr.277490.122. PubMed DOI PMC
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., et al. The Complete Sequence of a Human Genome. Science. 2022;376:44–53. doi: 10.1126/science.abj6987. PubMed DOI PMC
Huang H.-R., Liu X., Arshad R., Wang X., Li W.-M., Zhou Y., Ge X.-J. Telomere-to-Telomere Haplotype-Resolved Reference Genome Reveals Subgenome Divergence and Disease Resistance in Triploid Cavendish Banana. Hortic. Res. 2023;10:uhad153. doi: 10.1093/hr/uhad153. PubMed DOI PMC
Chen J., Wang Z., Tan K., Huang W., Shi J., Li T., Hu J., Wang K., Wang C., Xin B. A Complete Telomere-to-Telomere Assembly of the Maize Genome. Nat. Genet. 2023;55:1221–1231. doi: 10.1038/s41588-023-01419-6. PubMed DOI PMC
Koren S., Bao Z., Guarracino A., Ou S., Goodwin S., Jenike K.M., Lucas J., McNulty B., Park J., Rautiainen M. Gapless Assembly of Complete Human and Plant Chromosomes Using Only Nanopore Sequencing. bioRxiv. 2024:2024-03. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Du Z., Su H., Wang W., Ye L., Wei H., Peng Z., Anishchenko I., Baker D., Yang J. The trRosetta Server for Fast and Accurate Protein Structure Prediction. Nat. Protoc. 2021;16:5634–5651. doi: 10.1038/s41596-021-00628-9. PubMed DOI
Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods. 2022;19:679–682. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC
Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI
Li S., Olson W.K., Lu X.-J. Web 3DNA 2.0 for the Analysis, Visualization, and Modeling of 3D Nucleic Acid Structures. Nucleic Acids Res. 2019;47:W26–W34. doi: 10.1093/nar/gkz394. PubMed DOI PMC
Mellor C., Perez C., Sale J.E. Creation and Resolution of Non-B-DNA Structural Impediments during Replication. Crit. Rev. Biochem. Mol. 2022;57:412–442. doi: 10.1080/10409238.2022.2121803. PubMed DOI PMC
Herbert A. ALU Non-B-DNA Conformations, Flipons, Binary Codes and Evolution. R. Soc. Open Sci. 2020;7:200222. doi: 10.1098/rsos.200222. PubMed DOI PMC
Wright E.P., Abdelhamid M.A.S., Ehiabor M.O., Grigg M.C., Irving K., Smith N.M., Waller Z.A.E. Epigenetic Modification of Cytosines Fine Tunes the Stability of I-Motif DNA. Nucleic Acids Res. 2020;48:55–62. doi: 10.1093/nar/gkz1082. PubMed DOI PMC
Sugimoto N., Endoh T., Takahashi S., Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. Bull. Chem. Soc. Jpn. 2021;94:1970–1998. doi: 10.1246/bcsj.20210131. DOI
Matsumoto S., Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top. Curr. Chem. 2021;379:17. doi: 10.1007/s41061-021-00329-7. PubMed DOI
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J. Nucleic Acids. 2011;2011:e724215. doi: 10.4061/2011/724215. PubMed DOI PMC
Rocca R., Moraca F., Costa G., Nadai M., Scalabrin M., Talarico C., Distinto S., Maccioni E., Ortuso F., Artese A., et al. Identification of G-Quadruplex DNA/RNA Binders: Structure-Based Virtual Screening and Biophysical Characterization. Biochim. Biophys. Acta–Gen. Subj. 2017;1861:1329–1340. doi: 10.1016/j.bbagen.2016.12.023. PubMed DOI
Pina A.F., Sousa S.F., Azevedo L., Carneiro J. Non-B DNA Conformations Analysis through Molecular Dynamics Simulations. Biochim. Biophys. Acta–Gen. Subj. 2022;1866:130252. doi: 10.1016/j.bbagen.2022.130252. PubMed DOI
Wang L., Ge X., Liu L., Hu G. Code Interpreter for Bioinformatics: Are We There Yet? Ann. Biomed. Eng. 2024;52:754–756. doi: 10.1007/s10439-023-03324-9. PubMed DOI
Hilton J., Gelmon K., Bedard P.L., Tu D., Xu H., Tinker A.V., Goodwin R., Laurie S.A., Jonker D., Hansen A.R., et al. Results of the Phase I CCTG IND.231 Trial of CX-5461 in Patients with Advanced Solid Tumors Enriched for DNA-Repair Deficiencies. Nat. Commun. 2022;13:3607. doi: 10.1038/s41467-022-31199-2. PubMed DOI PMC
Drygin D., Siddiqui-Jain A., O’Brien S., Schwaebe M., Lin A., Bliesath J., Ho C.B., Proffitt C., Trent K., Whitten J.P., et al. Anticancer Activity of CX-3543: A Direct Inhibitor of rRNA Biogenesis. Cancer Res. 2009;69:7653–7661. doi: 10.1158/0008-5472.CAN-09-1304. PubMed DOI
Du Y., Zhou X. Targeting Non-B-Form DNA in Living Cells. Chem. Rec. 2013;13:371–384. doi: 10.1002/tcr.201300005. PubMed DOI
Kreig A., Calvert J., Sanoica J., Cullum E., Tipanna R., Myong S. G-Quadruplex Formation in Double Strand DNA Probed by NMM and CV Fluorescence. Nucleic Acids Res. 2015;43:7961–7970. doi: 10.1093/nar/gkv749. PubMed DOI PMC
Šket P., Pohleven J., Kovanda A., Štalekar M., Župunski V., Zalar M., Plavec J., Rogelj B. Characterization of DNA G-Quadruplex Species Forming from C9ORF72 G4C2-Expanded Repeats Associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Neurobiol. Aging. 2015;36:1091–1096. doi: 10.1016/j.neurobiolaging.2014.09.012. PubMed DOI
Grishchenko I.V., Purvinsh Y.V., Yudkin D.V. Mystery of Expansion: DNA Metabolism and Unstable Repeats. In: Zharkov D.O., editor. Mechanisms of Genome Protection and Repair. Springer International Publishing; Cham, Switzerland: 2020. pp. 101–124. PubMed