Special Issue "Bioinformatics of Unusual DNA and RNA Structures"

. 2024 May 10 ; 25 (10) : . [epub] 20240510

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu úvodníky, úvodní články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38791265

Grantová podpora
CZ.10.03.01/00/22_003/0000003 Operational Programme Just Transition, European Union

Nucleic acids are not only static carriers of genetic information but also play vital roles in controlling cellular lifecycles through their fascinating structural diversity [...].

Zobrazit více v PubMed

Zimmer C., Marck C., Guschlbauer W. Z-DNA and Other non-B-DNA Structures Are Reversed to B-DNA by Interaction with Netropsin. FEBS Lett. 1983;154:156–160. doi: 10.1016/0014-5793(83)80894-1. PubMed DOI

Rich A. Right-Handed and Left-Handed DNA: Conformational Information in Genetic Material. Cold Spring Harb. Symp. Quant. Biol. 1983;47:1–12. doi: 10.1101/SQB.1983.047.01.003. PubMed DOI

Conner B.N., Takano T., Tanaka S., Itakura K., Dickerson R.E. The Molecular Structure of d (ICpCpGpG), a Fragment of Right-Handed Double Helical A-DNA. Nature. 1982;295:294–299. doi: 10.1038/295294a0. PubMed DOI

Frank-Kamenetskii M.D., Mirkin S.M. Triplex DNA Structures. Annu. Rev. Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. PubMed DOI

Sundquist W.I., Klug A. Telomeric DNA Dimerizes by Formation of Guanine Tetrads between Hairpin Loops. Nature. 1989;342:825–829. doi: 10.1038/342825a0. PubMed DOI

Kim M.-Y., Gleason-Guzman M., Izbicka E., Nishioka D., Hurley L.H. The Different Biological Effects of Telomestatin and TMPyP4 Can Be Attributed to Their Selectivity for Interaction with Intramolecular or Intermolecular G-Quadruplex Structures. Cancer Res. 2003;63:3247–3256. PubMed

James P.L., Brown T., Fox K.R. Thermodynamic and Kinetic Stability of Intermolecular Triple Helices Containing Different Proportions of C+·GC and T·AT Triplets. Nucleic Acids Res. 2003;31:5598–5606. doi: 10.1093/nar/gkg782. PubMed DOI PMC

Waters J.T., Lu X.-J., Galindo-Murillo R., Gumbart J.C., Kim H.D., Cheatham T.E.I., Harvey S.C. Transitions of Double-Stranded DNA between the A- and B-Forms. J. Phys. Chem. B. 2016;120:8449–8456. doi: 10.1021/acs.jpcb.6b02155. PubMed DOI PMC

Tang Q. Z-Nucleic Acids: Uncovering the Functions from Past to Present. Eur. J. Immunol. 2022;52:1700–1711. doi: 10.1002/eji.202249968. PubMed DOI PMC

Holder I.T., Wagner S., Xiong P., Sinn M., Frickey T., Meyer A., Hartig J.S. Intrastrand Triplex DNA Repeats in Bacteria: A Source of Genomic Instability. Nucleic Acids Res. 2015;43:10126–10142. doi: 10.1093/nar/gkv1017. PubMed DOI PMC

Paugh S.W., Coss D.R., Bao J., Laudermilk L.T., Grace C.R., Ferreira A.M., Waddell M.B., Ridout G., Naeve D., Leuze M., et al. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via Which microRNAs Could Directly Alter Gene Expression. PLoS Comput. Biol. 2016;12:e1004744. doi: 10.1371/journal.pcbi.1004744. PubMed DOI PMC

Li Y., Syed J., Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem. Biol. 2016;23:1325–1333. doi: 10.1016/j.chembiol.2016.09.011. PubMed DOI

Sengupta P., Bose D., Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-Motif in the Human Genome. ChemBioChem. 2021;22:1517–1537. doi: 10.1002/cbic.202000703. PubMed DOI

Sollier J., Cimprich K.A. Breaking Bad: R-Loops and Genome Integrity. Trends Cell Biol. 2015;25:514–522. doi: 10.1016/j.tcb.2015.05.003. PubMed DOI PMC

Inagaki H., Ohye T., Kogo H., Tsutsumi M., Kato T., Tong M., Emanuel B.S., Kurahashi H. Two Sequential Cleavage Reactions on Cruciform DNA Structures Cause Palindrome-Mediated Chromosomal Translocations. Nat. Commun. 2013;4:1592. doi: 10.1038/ncomms2595. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Jovin T.M. Z-DNA: Methods and Protocols. Springer; Berlin/Heidelberg, Germany: 2023. The Origin of Left-Handed Poly[d(G-C)] PubMed

Herbert A. Z-DNA and Z-RNA in Human Disease. Commun. Biol. 2019;2:7. doi: 10.1038/s42003-018-0237-x. PubMed DOI PMC

Chiang D.C., Li Y., Ng S.K. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front. Immunol. 2021;11:3779. doi: 10.3389/fimmu.2020.625504. PubMed DOI PMC

Herbert A. Z-DNA: Methods and Protocols. Springer; Berlin/Heidelberg, Germany: 2023. Z-DNA and Z-RNA: Methods—Past and Future; pp. 295–329. PubMed

Song Q., Fan Y., Zhang H., Wang N. Z-DNA Binding Protein 1 Orchestrates Innate Immunity and Inflammatory Cell Death. Cytokine Growth Factor Rev. 2024 doi: 10.1016/j.cytogfr.2024.03.005. PubMed DOI

Sun L., Miao Y., Wang Z., Chen H., Dong P., Zhang H., Wu L., Jiang M., Chen L., Yang W., et al. Structural Insight into African Swine Fever Virus I73R Protein Reveals It as a Z-DNA Binding Protein. Transbound. Emerg. Dis. 2022;69:e1923–e1935. doi: 10.1111/tbed.14527. PubMed DOI

Kim C. How Z-DNA/RNA Binding Proteins Shape Homeostasis, Inflammation, and Immunity. BMB Rep. 2020;53:453–457. doi: 10.5483/BMBRep.2020.53.9.141. PubMed DOI PMC

Zhang J., Fakharzadeh A., Pan F., Roland C., Sagui C. Atypical Structures of GAA/TTC Trinucleotide Repeats Underlying Friedreich’s Ataxia: DNA Triplexes and RNA/DNA Hybrids. Nucleic Acids Res. 2020;48:9899–9917. doi: 10.1093/nar/gkaa665. PubMed DOI PMC

Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. MMBR. 2020;85:e00110-20. doi: 10.1128/MMBR.00110-20. PubMed DOI PMC

San Martin-Alonso M., Soler-Oliva M.E., García-Rubio M., García-Muse T., Aguilera A. Harmful R-Loops Are Prevented via Different Cell Cycle-Specific Mechanisms. Nat. Commun. 2021;12:4451. doi: 10.1038/s41467-021-24737-x. PubMed DOI PMC

Ngo G.H.P., Grimstead J.W., Baird D.M. UPF1 Promotes the Formation of R Loops to Stimulate DNA Double-Strand Break Repair. Nat. Commun. 2021;12:3849. doi: 10.1038/s41467-021-24201-w. PubMed DOI PMC

Mackay R.P., Xu Q., Weinberger P.M. R-Loop Physiology and Pathology: A Brief Review. DNA Cell Biol. 2020;39:1914–1925. doi: 10.1089/dna.2020.5906. PubMed DOI

Prorok P., Artufel M., Aze A., Coulombe P., Peiffer I., Lacroix L., Guédin A., Mergny J.-L., Damaschke J., Schepers A., et al. Involvement of G-Quadruplex Regions in Mammalian Replication Origin Activity. Nat. Commun. 2019;10:3274. doi: 10.1038/s41467-019-11104-0. PubMed DOI PMC

Esain-Garcia I., Kirchner A., Melidis L., Tavares R.d.C.A., Dhir S., Simeone A., Yu Z., Madden S.K., Hermann R., Tannahill D., et al. G-Quadruplex DNA Structure Is a Positive Regulator of MYC Transcription. Proc. Natl. Acad. Sci. USA. 2024;121:e2320240121. doi: 10.1073/pnas.2320240121. PubMed DOI PMC

Maltby C.J., Schofield J.P.R., Houghton S.D., O’Kelly I., Vargas-Caballero M., Deinhardt K., Coldwell M.J. A 5′ UTR GGN Repeat Controls Localisation and Translation of a Potassium Leak Channel mRNA through G-Quadruplex Formation. Nucleic Acids Res. 2020;48:9822–9839. doi: 10.1093/nar/gkaa699. PubMed DOI PMC

Mei Y., Deng Z., Vladimirova O., Gulve N., Johnson F.B., Drosopoulos W.C., Schildkraut C.L., Lieberman P.M. TERRA G-Quadruplex RNA Interaction with TRF2 GAR Domain Is Required for Telomere Integrity. Sci. Rep. 2021;11:3509. doi: 10.1038/s41598-021-82406-x. PubMed DOI PMC

Tassinari M., Richter S.N., Gandellini P. Biological Relevance and Therapeutic Potential of G-Quadruplex Structures in the Human Noncoding Transcriptome. Nucleic Acids Res. 2021;49:3617–3633. doi: 10.1093/nar/gkab127. PubMed DOI PMC

Kharel P., Balaratnam S., Beals N., Basu S. The Role of RNA G-Quadruplexes in Human Diseases and Therapeutic Strategies. Wiley Interdiscip. Rev. RNA. 2020;11:e1568. doi: 10.1002/wrna.1568. PubMed DOI

Zyner K.G., Simeone A., Flynn S.M., Doyle C., Marsico G., Adhikari S., Portella G., Tannahill D., Balasubramanian S. G-Quadruplex DNA Structures in Human Stem Cells and Differentiation. Nat. Commun. 2022;13:142. doi: 10.1038/s41467-021-27719-1. PubMed DOI PMC

Zanin I., Ruggiero E., Nicoletto G., Lago S., Maurizio I., Gallina I., Richter S.N. Genome-Wide Mapping of i-Motifs Reveals Their Association with Transcription Regulation in Live Human Cells. Nucleic Acids Res. 2023;51:8309–8321. doi: 10.1093/nar/gkad626. PubMed DOI PMC

Wang B. The RNA I-Motif in the Primordial RNA World. Orig. Life Evol. Biosph. 2019;49:105–109. doi: 10.1007/s11084-019-09576-7. PubMed DOI

Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC

Fleming A.M., Zhu J., Jara-Espejo M., Burrows C.J. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2′-Deoxyguanosine. Biochemistry. 2020;59:2616–2626. doi: 10.1021/acs.biochem.0c00387. PubMed DOI

Mengoli V., Ceppi I., Sanchez A., Cannavo E., Halder S., Scaglione S., Gaillard P., McHugh P.J., Riesen N., Pettazzoni P., et al. WRN Helicase and Mismatch Repair Complexes Independently and Synergistically Disrupt Cruciform DNA Structures. EMBO J. 2023;42:e111998. doi: 10.15252/embj.2022111998. PubMed DOI PMC

Goswami P., Bartas M., Lexa M., Bohálová N., Volná A., Červeň J., Červeňová V., Pečinka P., Špunda V., Fojta M. SARS-CoV-2 Hot-Spot Mutations Are Significantly Enriched within Inverted Repeats and CpG Island Loci. Brief. Bioinform. 2021;22:1338–1345. doi: 10.1093/bib/bbaa385. PubMed DOI PMC

Bartas M., Goswami P., Lexa M., Červeň J., Volná A., Fojta M., Brázda V., Pečinka P. Letter to the Editor: Significant Mutation Enrichment in Inverted Repeat Sites of New SARS-CoV-2 Strains. Brief. Bioinform. 2021;22:bbab129. doi: 10.1093/bib/bbab129. PubMed DOI PMC

Chaput J.C., Switzer C. A DNA Pentaplex Incorporating Nucleobase Quintets. Proc. Natl. Acad. Sci. USA. 1999;96:10614–10619. doi: 10.1073/pnas.96.19.10614. PubMed DOI PMC

Makova K.D., Weissensteiner M.H. Noncanonical DNA Structures Are Drivers of Genome Evolution. Trends Genet. 2023;39:109–124. doi: 10.1016/j.tig.2022.11.005. PubMed DOI PMC

Brázda V., Kolomazník J., Lỳsek J., Bartas M., Fojta M., Št’astnỳ J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI

Brázda V., Havlík J., Kolomazník J., Trenz O., Št’astnỳ J. R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences. Int. J. Mol. Sci. 2021;22:12857. doi: 10.3390/ijms222312857. PubMed DOI PMC

Hennecker C., Yamout L., Zhang C., Zhao C., Hiraki D., Moitessier N., Mittermaier A. Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int. J. Mol. Sci. 2022;23:16020. doi: 10.3390/ijms232416020. PubMed DOI PMC

Singh D., Desai N., Shah V., Datta B. In Silico Identification of Potential Quadruplex Forming Sequences in LncRNAs of Cervical Cancer. Int. J. Mol. Sci. 2023;24:12658. doi: 10.3390/ijms241612658. PubMed DOI PMC

Nicoletto G., Richter S.N., Frasson I. Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans. Int. J. Mol. Sci. 2023;24:9523. doi: 10.3390/ijms24119523. PubMed DOI PMC

Gould E., Pettersson J., Higgs S., Charrel R., de Lamballerie X. Emerging Arboviruses: Why Today? One Health. 2017;4:1–13. doi: 10.1016/j.onehlt.2017.06.001. PubMed DOI PMC

Gumina J.M., Richardson A.E., Shojiv M.H., Chambers A.E., Sandwith S.N., Reisinger M.A., Karns T.J., Osborne T.L., Alashi H.N., Anderson Q.T., et al. Differential Gene Expression Following DHX36/G4R1 Knockout Is Associated with G-Quadruplex Content and Cancer. Int. J. Mol. Sci. 2024;25:1753. doi: 10.3390/ijms25031753. PubMed DOI PMC

Feng Y., Luo Z., Huang R., Yang X., Cheng X., Zhang W. Epigenomic Features and Potential Functions of K+ and Na+ Favorable DNA G-Quadruplexes in Rice. Int. J. Mol. Sci. 2022;23:8404. doi: 10.3390/ijms23158404. PubMed DOI PMC

Shavkunov K.S., Markelova N.Y., Glazunova O.A., Kolzhetsov N.P., Panyukov V.V., Ozoline O.N. The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia Coli. Int. J. Mol. Sci. 2023;24:12960. doi: 10.3390/ijms241612960. PubMed DOI PMC

Zulfiqar S., Farooq M.A., Zhao T., Wang P., Tabusam J., Wang Y., Xuan S., Zhao J., Chen X., Shen S., et al. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int. J. Mol. Sci. 2023;24:5608. doi: 10.3390/ijms24065608. PubMed DOI PMC

Zhong H.-S., Dong M.-J., Gao F. G4Bank: A Database of Experimentally Identified DNA G-Quadruplex Sequences. Interdiscip. Sci. Comput. Life. Sci. 2023;15:515–523. doi: 10.1007/s12539-023-00577-9. PubMed DOI

Elimelech-Zohar K., Orenstein Y. An Overview on Nucleic-Acid G-Quadruplex Prediction: From Rule-Based Methods to Deep Neural Networks. Brief. Bioinform. 2023;24:bbad252. doi: 10.1093/bib/bbad252. PubMed DOI

Cer R.Z., Donohue D.E., Mudunuri U.S., Temiz N.A., Loss M.A., Starner N.J., Halusa G.N., Volfovsky N., Yi M., Luke B.T. Non-B DB v2. 0: A Database of Predicted Non-B DNA-Forming Motifs and Its Associated Tools. Nucleic Acids Res. 2012;41:D94–D100. doi: 10.1093/nar/gks955. PubMed DOI PMC

Luo Y., Granzhan A., Marquevielle J., Cucchiarini A., Lacroix L., Amrane S., Verga D., Mergny J.-L. Guidelines for G-Quadruplexes: I. In Vitro Characterization. Biochimie. 2023;214:5–23. doi: 10.1016/j.biochi.2022.12.019. PubMed DOI

Xu Q., Kowalski J. NBBC: A Non-B DNA Burden Explorer in Cancer. Nucleic Acids Res. 2023;51:W357–W364. doi: 10.1093/nar/gkad379. PubMed DOI PMC

Matos-Rodrigues G., Hisey J.A., Nussenzweig A., Mirkin S.M. Detection of Alternative DNA Structures and Its Implications for Human Disease. Mol. Cell. 2023;83:3622–3641. doi: 10.1016/j.molcel.2023.08.018. PubMed DOI

Frappier L., Price G.B., Martin R.G., Zannis-Hadjopoulos M. Monoclonal Antibodies to Cruciform DNA Structures. J. Mol. Biol. 1987;193:751–758. doi: 10.1016/0022-2836(87)90356-1. PubMed DOI

Feng X., Xie F.-Y., Ou X.-H., Ma J.-Y. Cruciform DNA in Mouse Growing Oocytes: Its Dynamics and Its Relationship with DNA Transcription. PLoS ONE. 2020;15:e0240844. doi: 10.1371/journal.pone.0240844. PubMed DOI PMC

Yin C., Zhang T., Balachandran S. Detecting Z-RNA and Z-DNA in Mammalian Cells. In: Kim K.K., Subramani V.K., editors. Z-DNA. Volume 2651. Springer; New York, NY, USA: 2023. pp. 277–284. Methods in Molecular Biology. PubMed

Javadekar S.M., Nilavar N.M., Paranjape A., Das K., Raghavan S.C. Characterization of G-Quadruplex Antibody Reveals Differential Specificity for G4 DNA Forms. DNA Res. 2020;27:dsaa024. doi: 10.1093/dnares/dsaa024. PubMed DOI PMC

Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D. I-Motif DNA Structures Are Formed in the Nuclei of Human Cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI

Weissensteiner M.H., Cremona M.A., Guiblet W.M., Stoler N., Harris R.S., Cechova M., Eckert K.A., Chiaromonte F., Huang Y.-F., Makova K.D. Accurate Sequencing of DNA Motifs Able to Form Alternative (Non-B) Structures. Genome Res. 2023;33:907–922. doi: 10.1101/gr.277490.122. PubMed DOI PMC

Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., et al. The Complete Sequence of a Human Genome. Science. 2022;376:44–53. doi: 10.1126/science.abj6987. PubMed DOI PMC

Huang H.-R., Liu X., Arshad R., Wang X., Li W.-M., Zhou Y., Ge X.-J. Telomere-to-Telomere Haplotype-Resolved Reference Genome Reveals Subgenome Divergence and Disease Resistance in Triploid Cavendish Banana. Hortic. Res. 2023;10:uhad153. doi: 10.1093/hr/uhad153. PubMed DOI PMC

Chen J., Wang Z., Tan K., Huang W., Shi J., Li T., Hu J., Wang K., Wang C., Xin B. A Complete Telomere-to-Telomere Assembly of the Maize Genome. Nat. Genet. 2023;55:1221–1231. doi: 10.1038/s41588-023-01419-6. PubMed DOI PMC

Koren S., Bao Z., Guarracino A., Ou S., Goodwin S., Jenike K.M., Lucas J., McNulty B., Park J., Rautiainen M. Gapless Assembly of Complete Human and Plant Chromosomes Using Only Nanopore Sequencing. bioRxiv. 2024:2024-03. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Du Z., Su H., Wang W., Ye L., Wei H., Peng Z., Anishchenko I., Baker D., Yang J. The trRosetta Server for Fast and Accurate Protein Structure Prediction. Nat. Protoc. 2021;16:5634–5651. doi: 10.1038/s41596-021-00628-9. PubMed DOI

Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods. 2022;19:679–682. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC

Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI

Li S., Olson W.K., Lu X.-J. Web 3DNA 2.0 for the Analysis, Visualization, and Modeling of 3D Nucleic Acid Structures. Nucleic Acids Res. 2019;47:W26–W34. doi: 10.1093/nar/gkz394. PubMed DOI PMC

Mellor C., Perez C., Sale J.E. Creation and Resolution of Non-B-DNA Structural Impediments during Replication. Crit. Rev. Biochem. Mol. 2022;57:412–442. doi: 10.1080/10409238.2022.2121803. PubMed DOI PMC

Herbert A. ALU Non-B-DNA Conformations, Flipons, Binary Codes and Evolution. R. Soc. Open Sci. 2020;7:200222. doi: 10.1098/rsos.200222. PubMed DOI PMC

Wright E.P., Abdelhamid M.A.S., Ehiabor M.O., Grigg M.C., Irving K., Smith N.M., Waller Z.A.E. Epigenetic Modification of Cytosines Fine Tunes the Stability of I-Motif DNA. Nucleic Acids Res. 2020;48:55–62. doi: 10.1093/nar/gkz1082. PubMed DOI PMC

Sugimoto N., Endoh T., Takahashi S., Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. Bull. Chem. Soc. Jpn. 2021;94:1970–1998. doi: 10.1246/bcsj.20210131. DOI

Matsumoto S., Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top. Curr. Chem. 2021;379:17. doi: 10.1007/s41061-021-00329-7. PubMed DOI

Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J. Nucleic Acids. 2011;2011:e724215. doi: 10.4061/2011/724215. PubMed DOI PMC

Rocca R., Moraca F., Costa G., Nadai M., Scalabrin M., Talarico C., Distinto S., Maccioni E., Ortuso F., Artese A., et al. Identification of G-Quadruplex DNA/RNA Binders: Structure-Based Virtual Screening and Biophysical Characterization. Biochim. Biophys. Acta–Gen. Subj. 2017;1861:1329–1340. doi: 10.1016/j.bbagen.2016.12.023. PubMed DOI

Pina A.F., Sousa S.F., Azevedo L., Carneiro J. Non-B DNA Conformations Analysis through Molecular Dynamics Simulations. Biochim. Biophys. Acta–Gen. Subj. 2022;1866:130252. doi: 10.1016/j.bbagen.2022.130252. PubMed DOI

Wang L., Ge X., Liu L., Hu G. Code Interpreter for Bioinformatics: Are We There Yet? Ann. Biomed. Eng. 2024;52:754–756. doi: 10.1007/s10439-023-03324-9. PubMed DOI

Hilton J., Gelmon K., Bedard P.L., Tu D., Xu H., Tinker A.V., Goodwin R., Laurie S.A., Jonker D., Hansen A.R., et al. Results of the Phase I CCTG IND.231 Trial of CX-5461 in Patients with Advanced Solid Tumors Enriched for DNA-Repair Deficiencies. Nat. Commun. 2022;13:3607. doi: 10.1038/s41467-022-31199-2. PubMed DOI PMC

Drygin D., Siddiqui-Jain A., O’Brien S., Schwaebe M., Lin A., Bliesath J., Ho C.B., Proffitt C., Trent K., Whitten J.P., et al. Anticancer Activity of CX-3543: A Direct Inhibitor of rRNA Biogenesis. Cancer Res. 2009;69:7653–7661. doi: 10.1158/0008-5472.CAN-09-1304. PubMed DOI

Du Y., Zhou X. Targeting Non-B-Form DNA in Living Cells. Chem. Rec. 2013;13:371–384. doi: 10.1002/tcr.201300005. PubMed DOI

Kreig A., Calvert J., Sanoica J., Cullum E., Tipanna R., Myong S. G-Quadruplex Formation in Double Strand DNA Probed by NMM and CV Fluorescence. Nucleic Acids Res. 2015;43:7961–7970. doi: 10.1093/nar/gkv749. PubMed DOI PMC

Šket P., Pohleven J., Kovanda A., Štalekar M., Župunski V., Zalar M., Plavec J., Rogelj B. Characterization of DNA G-Quadruplex Species Forming from C9ORF72 G4C2-Expanded Repeats Associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Neurobiol. Aging. 2015;36:1091–1096. doi: 10.1016/j.neurobiolaging.2014.09.012. PubMed DOI

Grishchenko I.V., Purvinsh Y.V., Yudkin D.V. Mystery of Expansion: DNA Metabolism and Unstable Repeats. In: Zharkov D.O., editor. Mechanisms of Genome Protection and Repair. Springer International Publishing; Cham, Switzerland: 2020. pp. 101–124. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...