Mapping and characterization of G-quadruplexes in the genome of the social amoeba Dictyostelium discoideum

. 2019 May 21 ; 47 (9) : 4363-4374.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30923812

G-quadruplexes (G4) are non-canonical DNA and/or RNA secondary structures formed in guanine-rich regions. Given their over-representation in specific regions in the genome such as promoters and telomeres, they are likely to play important roles in key processes such as transcription, replication or RNA maturation. Putative G4-forming sequences (G4FS) have been reported in humans, yeast, bacteria, viruses and many organisms. Here we present the first mapping of G-quadruplex sequences in Dictyostelium discoideum, the social amoeba. 'Dicty' is an ameboid protozoan with a small (34 Mb) and extremely AT rich genome (78%). As a consequence, very few G4-prone motifs are expected. An in silico analysis of the Dictyostelium genome with the G4Hunter software detected 249-1055 G4-prone motifs, depending on G4Hunter chosen threshold. Interestingly, despite an even lower GC content (as compared to the whole Dicty genome), the density of G4 motifs in Dictyostelium promoters and introns is significantly higher than in the rest of the genome. Fourteen selected sequences located in important genes were characterized by a combination of biophysical and biochemical techniques. Our data show that these sequences form highly stable G4 structures under physiological conditions. Five Dictyostelium genes containing G4-prone motifs in their promoters were studied for the effect of a new G4-binding porphyrin derivative on their expression. Our results demonstrated that the new ligand significantly decreased their expression. Overall, our results constitute the first step to adopt Dictyostelium discoideum as a 'G4-poor' model for studies on G-quadruplexes.

Zobrazit více v PubMed

Largy E., Mergny J.L., Gabelica V.. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci. 2016; 16:203–258. PubMed

Bidzinska J., Cimino-Reale G., Zaffaroni N., Folini M.. G-quadruplex structures in the human genome as novel therapeutic targets. Molecules. 2013; 18:12368–12395. PubMed PMC

Mergny J.L., Sen D.. DNA Quadruple Helices in Nanotechnology. Chem Rev. 2019; 18:doi:10.1021/acs.chemrev.8b00629. PubMed

Henderson E., Hardin C.C., Walk S.K., Tinoco I. Jr, Blackburn E.H.. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine· guanine base pairs. Cell. 1987; 51:899–908. PubMed

Sen D., Gilbert W.. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988; 334:364. PubMed

Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H.. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc .Natl. Acad. Sci. U.S.A. 2002; 99:11593–11598. PubMed PMC

Cogoi S., Xodo L.E.. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 2006; 34:2536–2549. PubMed PMC

Dempsey L.A., Sun H., Hanakahi L.A., Maizels N.. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, A role for GG pairing in immunoglobulin switch recombination. J. Biol. Chem. 1999; 274:1066–1071. PubMed

Chiarella S., De Cola A., Scaglione G.L., Carletti E., Graziano V., Barcaroli D., Lo Sterzo C., Di Matteo A., Di Ilio C., Falini B. et al. .. Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res. 2013; 41:3228–3239. PubMed PMC

Wallgren M., Mohammad J.B., Yan K.P., Pourbozorgi-Langroudi P., Ebrahimi M., Sabouri N.. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase. Nucleic Acids Res. 2016; 44:6213–6231. PubMed PMC

Kumari S., Bugaut A., Huppert J.L., Balasubramanian S.. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 2007; 3:218. PubMed PMC

Eddy J., Maizels N.. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res. 2008; 36:1321–1333. PubMed PMC

Collie G.W., Haider S.M., Neidle S., Parkinson G.N.. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 2010; 38:5569–5580. PubMed PMC

Gros J., Guédin A., Mergny J.L., Lacroix L.. G‐Quadruplex formation interferes with P1 helix formation in the RNA component of telomerase hTERC. ChemBioChem. 2008; 9:2075–2079. PubMed

Lacroix L., Seosse A., Mergny J.L.. Fluorescence-based duplex–quadruplex competition test to screen for telomerase RNA quadruplex ligands. Nucleic Acids Res. 2010; 39:e21. PubMed PMC

Kruisselbrink E., Guryev V., Brouwer K., Pontier D.B., Cuppen E., Tijsterman M.. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 2008; 18:900–905. PubMed

Ribeyre C., Lopes J., Boulé J.B., Piazza A., Guédin A., Zakian V.A., Mergny J.L., Nicolas A.. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genetics. 2009; 5:e1000475. PubMed PMC

Paeschke K., Bochman M.L., Garcia P.D., Cejka P., Friedman K.L., Kowalczykowski S.C., Zakian V.A.. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013; 497:458. PubMed PMC

Biffi G., Tannahill D., McCafferty J., Balasubramanian S.. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013; 5:182. PubMed PMC

Biffi G., Di Antonio M., Tannahill D., Balasubramanian S.. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem. 2014; 6:75–80. PubMed PMC

Salgado G.F., Cazenave C., Kerkour A., Mergny J.L.. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem. Sci. 2015; 6:3314–3320. PubMed PMC

Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC

Todd A.K., Johnston M., Neidle S.. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005; 33:2901–2907. PubMed PMC

Scaria V., Hariharan M., Arora A., Maiti S.. Quadfinder: server for identification and analysis of quadruplex-forming motifs in nucleotide sequences. Nucleic Acids Res. 2006; 34:W683–W685. PubMed PMC

Bedrat A., Lacroix L., Mergny J.L.. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–1759. PubMed PMC

Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotech. 2015; 33:877. PubMed

Hershman S.G., Chen Q., Lee J.Y., Kozak M.L., Yue P., Wang L.S., Johnson F.B.. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 2008; 36:144–156. PubMed PMC

Johnson J.E., Smith J.S., Kozak M.L., Johnson F.B.. In vivo veritas: Using yeast to probe the biological functions of G-quadruplexes. Biochimie. 2008; 90:1250–1263. PubMed PMC

Wieland M., Hartig J.S.. Investigation of mRNA quadruplex formation in Escherichia coli. Nat. Protoc. 2009; 4:1632–1640. PubMed

Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S.. G-quadruplex forming sequences in the genome of all known human viruses:A comprehensive guide. PLoS Comput. Biol. 2018; 14:e1006675. PubMed PMC

Belmonte-Reche E., Martínez-García M., Guédin-Beaurepaire A., Zuffo M., Arévalo-Ruiz M., Doria F., Campos-Salinas J., Maynadier M., Lopez-Rubio J.J., Freccero M. et al. .. G-quadruplex identification in the genome of protozoan parasites points to naphthalene diimide ligands as new antiparasitic agents. J. Med. Chem. 2018; 61:1231–1240. PubMed PMC

Sunderland M.E. Dictyostelium discoideum. Embryo Project Encyclopedia. 2009; ISSN; 1940–5030.

Urushihara H. Functional genomics of the social amoebae, Dictyostelium discoideum. Mol. Cells. 2002; 13:1–4. PubMed

Basu S., Fey P., Pandit Y., Dodson R., Kibbe W.A., Chisholm R.L.. DictyBase 2013: integrating multiple Dictyostelid species. Nucleic Acids Res. 2012; 41:D676–D683. PubMed PMC

Eichinger L., Pachebat J.A., Glöckner G., Rajandream M.A., Sucgang R., Berriman M. et al. .. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005; 435:43. PubMed PMC

R Development Core Team R: A Language and Environment for Statistical Computing. 2011; Vienna: The R Foundation for Statistical Computing.

del Villar‐Guerra R., Trent J.O., Chaires J.B.. G‐Quadruplex Secondary Structure Obtained from Circular Dichroism Spectroscopy. Angewandte Chem. 2018; 130:7289–7293. PubMed PMC

Mergny J.L., Phan A.T., Lacroix L.. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998; 435:74–78. PubMed

Mergny J.L., Lacroix L.. UV Melting of G-Quadruplexes. Curr. Protoc. Nucleic Acid Chem. 2009; doi:10.1002/0471142700.nc1701s37. PubMed

Guédin A., Lin L.Y., Armane S., Lacroix L., Mergny J.L., Thore S., Yatsunyk L.A.. Quadruplexes in ‘Dicty’: crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome. Nucleic Acids Res. 2018; 46:5297–5307. PubMed PMC

Amrane S., Andreola M.L., Pratviel G., Mergny J.L.. Derivatives of porphyrins, their process of preparation and their use for treating viral infections. Patent EP15306737. 2015; filed on October 30.

Pipier A., De Rache A., Modeste C., Amrane S., Mothes-Martin E., Stigliani J.L., Calsou P., Mergny J.L., Pratviel G., Gomez D.. G-Quadruplex binding optimization by gold(iii) insertion into the center of a porphyrin. Dalton Trans. 2019; doi:10.1039/c8dt04703k. PubMed

De Cian A., Guittat L., Kaiser M., Saccà B., Amrane S., Bourdoncle A., Alberti P., Teulade-Fichou M.P., Lacroix L., Mergny J.L.. Fluorescence-based melting assays for studying quadruplex ligands. Methods. 2007; 42:183–195. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites

. 2020 Jul ; 16 (7) : e1008917. [epub] 20200706

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...