Oral adverse events following COVID-19 and influenza vaccination in Australia

. 2023 Aug ; 19 (2) : 2253589. [epub] 20230921

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37734344

Vaccine hesitancy, spurred by misinterpretation of Adverse Events (AEs), threatens public health. Despite sporadic reports of oral AEs post-COVID-19 vaccination, systematic analysis is scarce. This study evaluates these AEs using the Australian Database of Adverse Event Notifications (DAEN). A secondary analysis of DAEN data was conducted, with the analysis period commencing from the start of the COVID-19 vaccination rollout in February 2021 and the inception of the influenza vaccine database in 1971, both through until December 2022. The focus of the analysis was on oral AEs related to COVID-19 and influenza vaccines. Reports were extracted according to a predefined schema and then stratified by vaccine type, sex, and age. Oral paresthesia was the most common oral AE after COVID-19 vaccination (75.28 per 10,000 reports), followed by dysgeusia (73.96), swollen tongue (51.55), lip swelling (49.43), taste disorder (27.32), ageusia (25.85), dry mouth (24.75), mouth ulceration (18.97), oral hypoaesthesia (15.60), and oral herpes (12.74). While COVID-19 and influenza vaccines shared most oral AEs, taste-related AEs, dry mouth, and oral herpes were significantly more common after COVID-19 vaccination. mRNA vaccines yielded more oral AEs than other types. Females had higher oral AE incidence. Most oral AEs did not differ significantly between COVID-19 and influenza vaccination. However, specific oral AEs, particularly taste-related, dry mouth, and oral herpes, were more prevalent after COVID-19 vaccination compared with seasonal influenza, especially in females and mRNA vaccine recipients.

Zobrazit více v PubMed

Larson HJ, Gakidou E, Murray CJL, Longo DL.. The vaccine-hesitant moment. N Engl J Med [Internet]. 2022. [accessed 2023 Mar 31];387(1):58–14. doi:10.1056/nejmra2106441. PubMed DOI PMC

Larson HJ, Cooper LZ, Eskola J, Katz SL, Ratzan S. Addressing the vaccine confidence gap. Lancet. 2011;378(9790):526–35. doi:10.1016/S0140-6736(11)60678-8. PubMed DOI

Jarrett C, Wilson R, O’Leary M, Eckersberger E, Larson HJ, Eskola J, Liang X, Chaudhuri M, Dube E, Gellin B, et al. Strategies for addressing vaccine hesitancy - a systematic review. Vaccine. 2015;33(34):4180–90. doi:10.1016/j.vaccine.2015.04.040. PubMed DOI

Eskola J, Duclos P, Schuster M, MacDonald NE, Liang X, Chaudhuri M, Dube E, Gellin B, Goldstein S, Larson H, et al. How to deal with vaccine hesitancy? Vaccine. 2015;33(34):4215–7. doi:10.1016/j.vaccine.2015.04.043. PubMed DOI

Naniche D, Hotez P, Bottazzi ME, Ergonul O, Figueroa JP, Gilbert S, Gursel M, Hassanain M, Kang G, Kaslow D, et al. Beyond the jab: a need for global coordination of pharmacovigilance for COVID-19 vaccine deployment. EClinicalMedicine [Internet]. 2021. [accessed 2021 Aug 1];36:36. doi:10.1016/j.eclinm.2021.100925. PubMed DOI PMC

Wise J. Covid-19: how AstraZeneca lost the vaccine PR war. BMJ [Internet]. 2021. [accessed 2023 May 25];373. doi:10.1136/BMJ.N921. PubMed DOI

Agosti F, Toffolutti V, Cavalli N, Nivakoski S, Mascherini M, Aassve A, Sane R. Information and vaccine hesitancy: evidence from the early stage of the vaccine roll-out in 28 European countries. PLoS One [Internet]. 2022. [accessed 2023 May 25];17(9):e0273555. doi:10.1371/JOURNAL.PONE.0273555. PubMed DOI PMC

Joyce MC, Mountjoy NJ, Johnson JA, Newman JT, Bandy DL, Atalla NA, Singh A, McElroy D. From trial to practice: incidence and severity of COVID-19 vaccine side effects in a medically at-risk and vaccine-hesitant community. BMC Public Health [Internet]. 2022. [accessed 2023 May 25];22(1):1–15. doi:10.1186/s12889-022-14824-z. PubMed DOI PMC

Chun Y, Jang J, Jo JH, Park JW. Various painful oral adverse reactions following COVID-19 vaccination: a case series. BMC Oral Health [Internet]. 2022. [accessed 2022 May 8];22(1):1–7. doi:10.1186/s12903-022-02100-w. PubMed DOI PMC

Mahajan R, Davila A, Sollecito TP, Stoopler ET, Kulkarni R. Oral adverse events following immunization against SARS-CoV-2: a case series. Oral Dis [Internet]. 2023. [accessed 2023 Jun 6]:1–5. doi:10.1111/ODI.14606. PubMed DOI

Di Spirito F, Contaldo M, Amato A, Di Palo MP, Pantaleo G, Amato M. COVID-19 vaccine and oral lesions: putative pathogenic mechanisms. Oral Dis [Internet]. 2022. [accessed 2022 Nov 5];28(S2):2639–40. doi:10.1111/ODI.14361. PubMed DOI PMC

Azzi L, Toia M, Stevanello N, Maggi F, Forlani G. An episode of oral mucositis after the first administration of the ChAdOx1 COVID‐19 vaccine. Oral Diseases. 2021. [accessed 2022 May 8];28(S2):2583–5. doi:10.1111/ODI.13874. PubMed DOI PMC

Caggiano M, Amato M, Di Spirito F, Galdi M, Sisalli L. mRNA COVID-19 vaccine and oral lichen planus: a case report. Oral Dis [Internet]. 2022. [accessed 2022 Nov 6];28(S2):2624–6. doi:10.1111/ODI.14184. PubMed DOI PMC

Riad A. Oral side effects of COVID-19 vaccine. Br Dent J [Internet]. 2021. [accessed 2021 Jul 3];230(2):59. doi:10.1038/s41415-021-2615-x. PubMed DOI PMC

Cirillo N. Reported orofacial adverse effects of COVID-19 vaccines: the knowns and the unknowns. J Oral Pathol Med [Internet]. 2021. [accessed 2022 May 8];50(4):424–7. doi:10.1111/JOP.13165. PubMed DOI PMC

Colizza A, Ralli M, Turchetta R, Minni A, Greco A, De Vincentiis M. Otolaryngology adverse events following COVID-19 vaccines. Eur Rev Med Pharmacol Sci. 2022;26(11):4113–6. doi:10.26355/EURREV_202206_28981. PubMed DOI

Troeltzsch M, Gogl M, Berndt R, Troeltzsch M. Oral lichen planus following the administration of vector‐based COVID‐19 vaccine (Ad26.COV2.S). Oral Diseases. 2021. [accessed 2022 May 8](S2):2595–6. doi:10.1111/ODI.14025. PubMed DOI PMC

Riad A. Oral side effects of COVID-19 vaccine (OSECV). ClinicalTrials.Gov [Internet]. 2021. [accessed 2021 Feb 24]. https://clinicaltrials.gov/ct2/show/NCT04706156.

Riad A, Schünemann H, Attia S, Peričić TP, Žuljević MF, Jürisson M, Kalda R, Lang K, Morankar S, Yesuf EA, et al., COVID-19 vaccines safety tracking (CoVaST): protocol of a multi-center prospective cohort study for active surveillance of COVID-19 vaccines’ side effects. Int J Environ Res Public Health 2021 [Internet]. 2021. [accessed 2021 Jul 31];18(15):7859. doi:10.3390/ijerph18157859. PubMed DOI PMC

Riad A, Pokorná A, Attia S, Klugarová J, Koščík M, Klugar M. Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic. J Clin Med [Internet]. 2021. [accessed 2021 Apr 1];10(7):1428. doi:10.3390/jcm10071428. PubMed DOI PMC

Riad A, Hocková B, Kantorová L, Slávik R, Spurná L, Stebel A, Havriľak M, Klugar M. Side effects of mRNA-based COVID-19 vaccine: nationwide phase IV study among healthcare workers in Slovakia. Pharmaceuticals 2021 [Internet]. 2021. [accessed 2021 Sep 4];14(9):873. doi:10.3390/PH14090873. PubMed DOI PMC

World Health Organization (WHO) . Global manual on surveillance of adverse events following immunization. Geneva: World Health Organization (WHO); 2016. [accessed 2023 May 25]. https://www.who.int/publications/i/item/10665206144.

Riad A, Põld A, Kateeb E, Attia S. Oral adverse events following COVID-19 vaccination: analysis of VAERS reports. Front Public Health. 2022;10:2230. doi:10.3389/fpubh.2022.952781. PubMed DOI PMC

Riad A, Schulz-Weidner N, Dziedzic A, Howaldt H-P, Attia S. Oral side effects of COVID-19 vaccines in 32 European countries: analysis of EudraVigilance reports. J Med Virol [Internet]. 2023. [accessed 2023 May 24];95(5):e28771. doi:10.1002/JMV.28771. PubMed DOI

Database of Adverse Event Notifications (DAEN) | Therapeutic Goods Administration (TGA) . [accessed 2023 May 8]. https://www.tga.gov.au/safety/safety/safety-monitoring-daen-database-adverse-event-notifications/database-adverse-event-notifications-daen.

ICH IC for H of TR for P for HU . MedDRA hierarchy. Medical dictionary for regulatory activities [Internet]. 2022. https://www.meddra.org/how-to-use/basics/hierarchy.

The R Foundation . The R project for statistical computing [Internet]. [accessed 2023 May 22]. https://www.r-project.org/index.html.

Maltezou HC, Anastassopoulou C, Hatziantoniou S, Poland GA, Tsakris A. Anaphylaxis rates associated with COVID-19 vaccines are comparable to those of other vaccines. Vaccine. 2022;40(2):183–6. doi:10.1016/J.VACCINE.2021.11.066. PubMed DOI PMC

Hause AM, Gee J, Johnson T, Jazwa A, Marquez P, Miller E, Su J, Shimabukuro TT, Shay DK. Anxiety-related adverse event clusters after Janssen COVID-19 vaccination — five U.S. mass vaccination sites, April 2021. MMWR Recommendations Rep [Internet]. 2021. [accessed 2023 May 24];70(18):685–8. doi:10.15585/MMWR.MM7018E3. PubMed DOI PMC

Alhaidari F, Almuhaideb A, Alsunaidi S, Ibrahim N, Aslam N, Khan IU, Shaikh F, Alshahrani M, Alharthi H, Alsenbel Y, et al. E-triage systems for COVID-19 outbreak: review and recommendations. Sensors [Internet]. 2021. [accessed 2022 May 10];21(8):2845. doi:10.3390/S21082845. PubMed DOI PMC

Lechien JR, Diallo AO, Dachy B, Le Bon SD, Maniaci A, Vaira LA, Saussez S. COVID-19: post-vaccine smell and taste disorders: report of 6 cases: ear. Nose Throat J [Internet]. 2021. [accessed 2022 May 10]:014556132110331. doi:10.1177/01455613211033125. PubMed DOI

Alkhotani AM, Alsindi TS, Alqurashi AA, Masarit RM, Gazzaz RT, Saggat RZ, Halawani MA. Public awareness of the neurological manifestation of COVID-19 in Saudi Arabia. Neurosci J [Internet]. 2022. [accessed 2022 May 10];27(1):10–15. doi:10.17712/NSJ.2022.1.20210089. PubMed DOI PMC

Avasarala J, McLouth CJ, Pettigrew LC, Mathias S, Qaiser S, Zachariah P. VAERS-reported new-onset seizures following use of COVID-19 vaccinations as compared to influenza vaccinations. Br J Clin Pharmacol [Internet]. 2022. [accessed 2023 May 24];88(11):4784–8. doi:10.1111/BCP.15415. PubMed DOI PMC

Department of Health and Aged Care . COVID-19 vaccination rollout update [Internet]. [accessed 2023 May 24]. https://www.health.gov.au/resources/collections/covid-19-vaccination-rollout-update?language=en.

European Centre for Disease Prevention and Control (ECDC) . COVID-19 vaccine tracker [Internet]. [accessed 2022 Oct 23]. https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab.

US Centers for Disease Control and Prevention (CDC) . Vaccinations in the US. CDC COVID Data Tracker [Internet]. [accessed 2023 May 24]. https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total.

Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US—December 14, 2020-January 18, 2021. JAMA [Internet]. 2021. [accessed 2023 May 24];325(11):1101–2. doi:10.1001/JAMA.2021.1967. PubMed DOI PMC

Sa S, Lee CW, Shim SR, Yoo H, Choi J, Kim JH, Lee K, Hong M, Han HW. The safety of mRNA-1273, BNT162b2 and JNJ-78436735 COVID-19 vaccines: safety monitoring for adverse events using real-world data. Vaccines (Basel) [Internet]. 2022. [accessed 2023 May 24];10(2):320. doi:10.3390/vaccines10020320. PubMed DOI PMC

Lassanova M, Lassan S, Liskova S, Tesar T, Cicova M. Analysis of spontaneous reports of suspected adverse reactions after vaccination against COVID-19 in Slovakia. Front Pharmacol. 2023;14:13. doi:10.3389/fphar.2023.1097890. PubMed DOI PMC

Klugar M, Riad A, Mekhemar M, Conrad J, Buchbender M, Howaldt H-P, Attia S. Side effects of mRNA-based and viral vector-based COVID-19 vaccines among German healthcare workers. Biology 2021[Internet]. 2021. [accessed 2021 Aug 8];10(8):752. doi:10.3390/biology10080752. PubMed DOI PMC

Riad A, Sağıroğlu D, Üstün B, Pokorná A, Klugarová J, Attia S, Klugar M. Prevalence and risk factors of CoronaVac side effects: an independent cross-sectional study among healthcare workers in Turkey. J Clin Med [Internet]. 2021. [accessed 2021 Jul 1];10(12):2629. doi:10.3390/jcm10122629. PubMed DOI PMC

Sprent J, King C. COVID-19 vaccine side effects: the positives about feeling bad. Sci Immunol [Internet]. 2021. [accessed 2021 Jul 6];6(60):eabj9256. doi:10.1126/SCIIMMUNOL.ABJ9256. PubMed DOI PMC

Walter R, Hartmann K, Fleisch F, Reinhart WH, Kuhn M. Reactivation of herpesvirus infections after vaccinations? Lancet. 1999;353(9155):810. doi:10.1016/S0140-6736(99)00623-6. PubMed DOI

Brosh-Nissimov T, Sorek N, Yeshayahu M, Zherebovich I, Elmaliach M, Cahan A, Amit S, Rotlevi E. Oropharyngeal shedding of herpesviruses before and after BNT162b2 mRNA vaccination against COVID-19. Vaccine. 2021;39(40):5729–31. doi:10.1016/J.VACCINE.2021.08.088. PubMed DOI PMC

Iwanaga J, Fukuoka H, Fukuoka N, Yutori H, Ibaragi S, Tubbs RS. A narrative review and clinical anatomy of herpes zoster infection following COVID-19 vaccination. Clin Anat [Internet]. 2022. [accessed 2023 May 25];35(1):45–51. doi:10.1002/CA.23790. PubMed DOI PMC

Whitaker HJ, Hocine MN, Farrington CP. The methodology of self-controlled case series studies. Stat Methods Med Res. 2009;18(1):7–26. doi:10.1177/0962280208092342. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...