Immobilization of silver nanoparticles on polyethylene terephthalate
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24994960
PubMed Central
PMC4072890
DOI
10.1186/1556-276x-9-305
PII: 1556-276X-9-305
Knihovny.cz E-zdroje
- Klíčová slova
- Atomic force microscopy (AFM), Plasma activation, Polymer, Silver nanoparticle grafting, Surface properties, Transmission electron microscopy (TEM),
- Publikační typ
- časopisecké články MeSH
Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4'-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Silver nanoparticles were characterized by ultraviolet-visible spectroscopy and by transmission electron microscopy (TEM). The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma-activated PET and that it mediates subsequent grafting of the silver nanoparticles. AgNP previously coated by dithiol bonded to the PET surface much less.
Zobrazit více v PubMed
Gam-Derouich S, Mahouche-Chergui S, Truong S, Ben Hassen-Chehimi D, Chehimi MM. Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer. 2011;9:4463–4470. doi: 10.1016/j.polymer.2011.08.007. DOI
Guerrouache M, Mahouche-Chergui S, Chehimi MM, Carbonnier B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol–yne click photopatterning approach. Chem Commun. 2012;9:7486–7488. doi: 10.1039/c2cc33134a. PubMed DOI
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interfac. 2009;9:83–89. doi: 10.1016/j.cis.2008.09.002. PubMed DOI
Krutyakov YA, Kudrynskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;9:233–257. doi: 10.1070/RC2008v077n03ABEH003751. DOI
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo AC, Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;9:103–110. doi: 10.1016/j.ijantimicag.2009.01.017. PubMed DOI
Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;9:1841–1848. doi: 10.1016/j.cca.2010.08.016. PubMed DOI
García-Barrasa J, López-de-luzuriaga JM, Monge M. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem. 2011;9:7–19. doi: 10.2478/s11532-010-0124-x. DOI
Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci: Nanosci Nanotechnol. 2013;9:033001. doi: 10.1088/2043-6262/4/3/033001. DOI
Omastova M, Mičušík M. Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerization. Chem Pap. 2012;9:392–414. doi: 10.2478/s11696-011-0120-4. DOI
Li C, Bai H, Shi GQ. Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev. 2009;9:2397–2409. doi: 10.1039/b816681c. PubMed DOI
Yagci Y, Jockusch S, Turro NJ. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules. 2010;9:6245–6260. doi: 10.1021/ma1007545. DOI
Mahouche-Chergui S, Guerrouache M, Carbonnier B, Chehimi MM. Polymer-immobilized nanoparticles. Colloid Surf A. 2013;9:43–68.
Řezníčková A, Kolská Z, Hnatowicz V, Stopka P, Švorčík V. Comparison of argon plasma-induced surface changes of thermoplastic polymers. Nucl Instrum Meth B. 2011;9:83–88. doi: 10.1016/j.nimb.2010.11.018. DOI
Smith SL, Nissamudeen KM, Philip D, Gopchandran KG. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A. 2008;9:186–190. doi: 10.1016/j.saa.2007.12.002. PubMed DOI
Řezníčková A, Kolská Z, Siegel J, Švorčík V. Grafting of gold nanoparticles and nanorods on plasma-treated polymers by thiols. J Mater Sci. 2012;9:6297–6304. doi: 10.1007/s10853-012-6550-8. DOI
Lu M, Li XH, Yu BZ, Li HL. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly. J Colloid Interf Sci. 2002;9:376–382. doi: 10.1006/jcis.2002.8238. PubMed DOI
Kolská Z, Řezníčková A, Švorčík V. Surface characterization of polymer foils. e-polymers. 2012;9:1–6.
Yin J, Yang Y, Hu ZQ, Deng BL. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J Membrane Sci. 2013;9:73–82.
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol. 2007;9:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Mayoral A, Barron H, Estrada-Salas R, Vazquez-Duran A, Jose-Yacamán M. Nanoparticle stability from the nano to the meso interval. Nanoscale. 2010;9:335–342. doi: 10.1039/b9nr00287a. PubMed DOI
Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R. 2002;9:143–206. doi: 10.1016/S0927-796X(02)00004-9. DOI
Webb HK, Crawford RJ, Sawabe T, Ivanova EP. The systems studied may have potential application e.g. in medicine as prevention of creation of bacterial biofilm. Microbs Environ. 2009;9:39–42. doi: 10.1264/jsme2.ME08538. DOI
Surface Modification of Polymer Substrates for Biomedical Applications