• Je něco špatně v tomto záznamu ?

The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium

D. Pacheco-Villalobos, SM. Díaz-Moreno, A. van der Schuren, T. Tamaki, YH. Kang, B. Gujas, O. Novak, N. Jaspert, Z. Li, S. Wolf, C. Oecking, K. Ljung, V. Bulone, CS. Hardtke,

. 2016 ; 28 (5) : 1009-24. [pub] 20160505

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18017259

The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18017259
003      
CZ-PrNML
005      
20180515103135.0
007      
ta
008      
180515s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1105/tpc.15.01057 $2 doi
035    __
$a (PubMed)27169463
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pacheco-Villalobos, David $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
245    14
$a The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium / $c D. Pacheco-Villalobos, SM. Díaz-Moreno, A. van der Schuren, T. Tamaki, YH. Kang, B. Gujas, O. Novak, N. Jaspert, Z. Li, S. Wolf, C. Oecking, K. Ljung, V. Bulone, CS. Hardtke,
520    9_
$a The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.
650    _2
$a Brachypodium $x metabolismus $7 D058431
650    _2
$a buněčná stěna $x metabolismus $7 D002473
650    _2
$a galaktany $x metabolismus $7 D005685
650    _2
$a kyseliny indoloctové $x metabolismus $7 D007210
650    _2
$a kořeny rostlin $x metabolismus $7 D018517
650    _2
$a signální transdukce $x fyziologie $7 D015398
655    _2
$a časopisecké články $7 D016428
700    1_
$a Díaz-Moreno, Sara M $u Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
700    1_
$a van der Schuren, Alja $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
700    1_
$a Tamaki, Takayuki $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
700    1_
$a Kang, Yeon Hee $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
700    1_
$a Gujas, Bojan $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
700    1_
$a Novak, Ondrej $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic.
700    1_
$a Jaspert, Nina $u Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany.
700    1_
$a Li, Zhenni $u Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany.
700    1_
$a Wolf, Sebastian $u Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany.
700    1_
$a Oecking, Claudia $u Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany.
700    1_
$a Ljung, Karin $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
700    1_
$a Bulone, Vincent $u Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
700    1_
$a Hardtke, Christian S $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland christian.hardtke@unil.ch.
773    0_
$w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 28, č. 5 (2016), s. 1009-24
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27169463 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180515103309 $b ABA008
999    __
$a ok $b bmc $g 1300883 $s 1014099
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 28 $c 5 $d 1009-24 $e 20160505 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...