-
Je něco špatně v tomto záznamu ?
The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium
D. Pacheco-Villalobos, SM. Díaz-Moreno, A. van der Schuren, T. Tamaki, YH. Kang, B. Gujas, O. Novak, N. Jaspert, Z. Li, S. Wolf, C. Oecking, K. Ljung, V. Bulone, CS. Hardtke,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 1989 do Před 1 rokem
Freely Accessible Science Journals
od 1989 do Před 12 měsíci
Open Access Digital Library
od 1989-01-01
PubMed
27169463
DOI
10.1105/tpc.15.01057
Knihovny.cz E-zdroje
- MeSH
- Brachypodium metabolismus MeSH
- buněčná stěna metabolismus MeSH
- galaktany metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.
Center for Plant Molecular Biology Plant Physiology University of Tübingen 72074 Tübingen Germany
Centre for Organismal Studies University of Heidelberg 69120 Heidelberg Germany
Department of Plant Molecular Biology University of Lausanne CH 1015 Lausanne Switzerland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017259
- 003
- CZ-PrNML
- 005
- 20180515103135.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1105/tpc.15.01057 $2 doi
- 035 __
- $a (PubMed)27169463
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Pacheco-Villalobos, David $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
- 245 14
- $a The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium / $c D. Pacheco-Villalobos, SM. Díaz-Moreno, A. van der Schuren, T. Tamaki, YH. Kang, B. Gujas, O. Novak, N. Jaspert, Z. Li, S. Wolf, C. Oecking, K. Ljung, V. Bulone, CS. Hardtke,
- 520 9_
- $a The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.
- 650 _2
- $a Brachypodium $x metabolismus $7 D058431
- 650 _2
- $a buněčná stěna $x metabolismus $7 D002473
- 650 _2
- $a galaktany $x metabolismus $7 D005685
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a kořeny rostlin $x metabolismus $7 D018517
- 650 _2
- $a signální transdukce $x fyziologie $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Díaz-Moreno, Sara M $u Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
- 700 1_
- $a van der Schuren, Alja $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
- 700 1_
- $a Tamaki, Takayuki $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
- 700 1_
- $a Kang, Yeon Hee $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
- 700 1_
- $a Gujas, Bojan $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
- 700 1_
- $a Novak, Ondrej $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic.
- 700 1_
- $a Jaspert, Nina $u Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany.
- 700 1_
- $a Li, Zhenni $u Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany.
- 700 1_
- $a Wolf, Sebastian $u Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany.
- 700 1_
- $a Oecking, Claudia $u Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany.
- 700 1_
- $a Ljung, Karin $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
- 700 1_
- $a Bulone, Vincent $u Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden.
- 700 1_
- $a Hardtke, Christian S $u Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland christian.hardtke@unil.ch.
- 773 0_
- $w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 28, č. 5 (2016), s. 1009-24
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27169463 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103309 $b ABA008
- 999 __
- $a ok $b bmc $g 1300883 $s 1014099
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 28 $c 5 $d 1009-24 $e 20160505 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
- LZP __
- $a Pubmed-20180515