Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in Trifoliate Orange by Regulating H+-ATPase Activity and Gene Expression

. 2021 ; 12 () : 659694. [epub] 20210325

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33841484

A feature of arbuscular mycorrhiza is enhanced drought tolerance of host plants, although it is unclear whether host H+-ATPase activity and gene expression are involved in the physiological process. The present study aimed to investigate the effects of an arbuscular mycorrhizal fungus (AMF), Funneliformis mosseae, on H+-ATPase activity, and gene expression of trifoliate orange (Poncirus trifoliata) seedlings subjected to well-watered (WW) and drought stress (DS), together with the changes in leaf gas exchange, root morphology, soil pH value, and ammonium content. Soil drought treatment dramatically increased H+-ATPase activity of leaf and root, and AMF inoculation further strengthened the increased effect. A plasma membrane (PM) H+-ATPase gene of trifoliate orange, PtAHA2 (MW239123), was cloned. The PtAHA2 expression was induced by mycorrhization in leaves and roots and also up-regulated by drought treatment in leaves of AMF-inoculated seedlings and in roots of AMF- and non-AMF-inoculated seedlings. And, the induced expression of PtAHA2 under mycorrhization was more prominent under DS than under WW. Mycorrhizal plants also showed greater photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate and better root volume and diameter than non-mycorrhizal plants under DS. AMF inoculation significantly increased leaf and root ammonium content, especially under DS, whereas it dramatically reduced soil pH value. In addition, H+-ATPase activity was significantly positively correlated with ammonium contents in leaves and roots, and root H+-ATPase activity was significantly negatively correlated with soil pH value. Our results concluded that AMF stimulated H+-ATPase activity and PtAHA2 gene expression in response to DS, which resulted in great nutrient (e.g., ammonium) uptake and root growth, as well as low soil pH microenvironment.

Zobrazit více v PubMed

Aggarwal A., Kadian N., Tanwar A., Yadav A., Gupta K. (2011). Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J. Appl. Nat. Sci. 3 340–351. 10.31018/jans.v3i2.211 DOI

Augé R. M., Toler H. D., Saxton A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25 13–24. 10.1007/s00572-014-0585-4 PubMed DOI

Chen H., Zhang Q., Cai H., Xu F. (2017). Ethylene mediates alkaline-induced rice growth inhibition by negatively regulating plasma membrane H+-ATPase activity in roots. Front. Plant Sci. 8:1839. 10.3389/fpls.2017.01839 PubMed DOI PMC

Cheng H. Q., Giri B., Wu Q. S., Zou Y. N., Kuča K. (2021). Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Arch. Agron. Soil Sci. 10.1080/03650340.2021.1878497. [Epub ahead of print]. DOI

Chu G., Chen T. T., Wang Z. Q., Yang J. C., Zhang J. H. (2014). Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crop Res. 162 108–119. 10.1016/j.fcr.2013.11.006 DOI

Fernández-Lizarazo J. C., Moreno-Fonseca L. P. (2016). Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agron. Colomb. 34 179–189. 10.15446/agron.colomb.v34n2.55569 DOI

Ferrol N., Barea J. M., Azcón-Aguilar C. (2000). The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr. Genet. 37 112–118. 10.1007/s002940050017 PubMed DOI

Franco J. A., Bañón S., Vicente M. M. J., Miralles J., Martínez-Sánchez J. J. (2011). Review article:root development in horticultural plants grown under abiotic stress conditions-a review. J. Hort. Sci. Biotechnol. 86 543–556. 10.1080/14620316.2011.11512802 DOI

Fuglsang A. T., Guo Y., Cuin T. A., Qiu Q., Song C., Kristiansen K. A., et al. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19 1617–1634. 10.1105/tpc.105.035626 PubMed DOI PMC

Garry M., Rosewarne F., Andrew Smith D. P., Schachtman S. E. (2007). Localization of proton-atpase genes expressed in arbuscular mycorrhizal tomato plants. Mycorrhiza 17 249–258. 10.1007/s00572-006-0101-6 PubMed DOI

Gaxiola R. A., Palmgren M. G., Schumacher K. (2007). Plant proton pumps. FEBS Lett. 581 2204–2214. 10.1016/j.febslet.2007.03.050 PubMed DOI

Gianinazzi-Pearson V., Arnould C., Oufattole M., Arango M., Gianinazzi S. (2000). Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211 609–613. 10.1007/s004250000323 PubMed DOI

Hadian-Deljou M., Esna-Ashari M., Mirzaie-asl A. (2020). Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings. Sci. Hortic. 268:109373. 10.1016/j.scienta.2020.109373 DOI

Haruta M., Burch H. L., Nelson R. B., Barrett-Wilt G., Kline K. G., Mohsin S. B., et al. (2010). Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity. J. Biol. Chem. 285 17918–17929. 10.1074/jbc.m110.101733 PubMed DOI PMC

Haruta M., Sussman M. R. (2012). The effect of a genetically reduced plasma membrane protonmotive force on vegetative growth of Arabidopsis. Plant Physiol. 158 1158–1171. 10.1104/pp.111.189167 PubMed DOI PMC

He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 262:108745. 10.1016/j.scienta.2019.108745 DOI

Ingrain E. A., Malamy J. E. (2010). Root system architecture in avoiding chilling-induced water stress. Adv. Bot. Res. 55 76–106.

Johansen A., Finlay R. D., Olsson P. A. (2010). Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133 705–712. 10.1111/j.1469-8137.1996.tb01939.x DOI

Krajinski F., Courty P. E., Sieh D., Franken P., Zhang H. Q., Bucher M., et al. (2014). The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26 1808–1817. 10.1105/tpc.113.120436 PubMed DOI PMC

Liu J. L., Chen J. D., Xie K., Tian Y., Yan A. N., Liu J. J., et al. (2020). A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant Cell Environ. 43 1069–1083. 10.1111/pce.13714 PubMed DOI

Liu J. L., Liu J. J., Chen A. Q., Ji M. J., Chen J. D., Yang X. F., et al. (2016). Analysis of tomato plasma membrane H+-ATPase gene family suggests a mycorrhizal-mediated regulatory mechanism conserved in diverse plant species. Mycorrhiza 26 645–656. 10.1007/s00572-016-0700-9 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-Δ Δ CT method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Mak M., Babla M., Xu S. C., O’Carrigan A., Liu X. H., Gong Y. M., et al. (2014). Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environ. Exp. Bot. 98 1–12. 10.1016/j.envexpbot.2013.10.003 DOI

Małgorzata J., Wdowikowska A., Grażyna K. (2018). Assay of plasma membrane H+-ATPase in plant tissues under abiotic stresses. Meth. Mol. Biol. 1696 205–215. 10.1007/978-1-4939-7411-5_14 PubMed DOI

Młodziñska E., Kłobus G., Christensen M. D., Fuglsang A. T. (2014). The plasma membrane H+-ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. Physiol. Plant 154 270–282. 10.1111/ppl.12305 PubMed DOI

Motte H., Beeckman T. (2020). A pH antastic ammonium response. Nature Plants 6 1080–1081. PubMed

Palmgren M. G. (2001). Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 817–845. 10.1146/annurev.arplant.52.1.817 PubMed DOI

Petrasek J., Friml J. (2009). Auxin transport routes in plant development. Development 136 2675–2688. 10.1242/dev.030353 PubMed DOI

Phillips J. M., Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55 158–161. 10.1016/s0007-1536(70)80110-3 DOI

Porcel R., Ruiz-Lozano J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55 1743–1750. 10.1093/jxb/erh188 PubMed DOI

Ramos A. C., Façanha A. R., José F. (2008a). “Ion dynamics during the polarized growth ofarbuscular mycorrhizal fungi: from presymbiosis to symbiosis,” in Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-function, Biotechnology, Eco-physiology, Structure and Systematics, ed. Varma A. (Berlin: Springer; ), 241–260. 10.1007/978-3-540-78826-3_12 DOI

Ramos A. C., Façanha A. R., José F. (2008b). Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol. 178 177–188. 10.1111/j.1469-8137.2007.02344.x PubMed DOI

Ramos A. C., Martins M. A., Okorokova-Façanha A. L., Fábio L. O., Okorokov L. A., Nuno S. (2009). Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza 19 69–80. 10.1007/s00572-008-0204-3 PubMed DOI

Requena N., Breuninger M., Franken P., Ocón A. (2003). Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol. 132 1540–1549. 10.1104/pp.102.019042 PubMed DOI PMC

Staal M., De-Cnodder T., Simon D., Vandenbussche F., Vander Straeten D., Verbelen J., et al. (2011). Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Plant Physiol. 155 2049–2055. 10.1104/pp.110.168476 PubMed DOI PMC

Sun Y. P., Unestam T., Lucas S. D., Johanson K. J., Kenne L., Finlay R. (1999). Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 9 137–144. 10.1007/s005720050298 DOI

Tang Z. C. (1999). A Guide to Modern Plant Physiology Experiments. Shanghai: Science Press, 138–139.

Ueno K., Kinoshita T., Inoue S., Emi T., Shimazaki K. (2005). Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol. 46 955–963. 10.1093/pcp/pci104 PubMed DOI

Wang Y., Noguchi K., Ono N., Inoue S., Terashima I., Kinoshita T. (2014). Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc. Natl. Acad. Sci. U.S.A. 111 533–538. 10.1073/pnas.1305438111 PubMed DOI PMC

Wu Q. S., He J. D., Srivastava A. K., Zou Y. N., Kuča K. (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 39 1149–1158. 10.1093/treephys/tpz039 PubMed DOI

Wu Q. S., Srivastava A. K., Zou Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. Sci. Hortic. 164 77–87. 10.1016/j.scienta.2013.09.010 DOI

Xiong Y. C., Li F. M., Zhang T., Xia C. (2007). Evolution mechanism of non-hydraulic root-to-shoot signal during the anti-drought genetic breeding of spring wheat. Environ. Exp. Bot. 59 193–205. 10.1016/j.envexpbot.2005.12.003 DOI

Yoshida S. (1991). Chilling-induced inactivation and its recovery of tonoplast H+-ATPase in mung bean cell suspension cultures. Plant Physiol. 95 456–460. 10.1104/pp.95.2.456 PubMed DOI PMC

Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 171:103962.

Zou Y. N., Wang P., Li C. Y., Ni Q. D., Zhang D. J., Wu Q. S. (2017). Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci. Rep. 7:41134. PubMed PMC

Zou Y. N., Wu Q. S., Kuča K. (2020). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 10.1111/plb.13161. [Epub ahead of print]. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...