Metabolomics Analysis Reveals Drought Responses of Trifoliate Orange by Arbuscular Mycorrhizal Fungi With a Focus on Terpenoid Profile

. 2021 ; 12 () : 740524. [epub] 20211006

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34691116

Soil water deficit seriously affects crop production, and soil arbuscular mycorrhizal fungi (AMF) enhance drought tolerance in crops by unclear mechanisms. Our study aimed to analyze changes in non-targeted metabolomics in roots of trifoliate orange (Poncirus trifoliata) seedlings under well-watered and soil drought after inoculation with Rhizophagus intraradices, with a focus on terpenoid profile. Root mycorrhizal fungal colonization varied from 70% under soil drought to 85% under soil well-watered, and shoot and root biomass was increased by AMF inoculation, independent of soil water regimes. A total of 643 secondary metabolites in roots were examined, and 210 and 105 differential metabolites were regulated by mycorrhizal fungi under normal water and drought stress, along with 88 and 17 metabolites being up-and down-regulated under drought conditions, respectively. KEGG annotation analysis of differential metabolites showed 38 and 36 metabolic pathways by mycorrhizal inoculation under normal water and drought stress conditions, respectively. Among them, 33 metabolic pathways for mycorrhization under drought stress included purine metabolism, pyrimidine metabolism, alanine, aspartate and glutamate metabolism, etc. We also identified 10 terpenoid substances, namely albiflorin, artemisinin (-)-camphor, capsanthin, β-caryophyllene, limonin, phytol, roseoside, sweroside, and α-terpineol. AMF colonization triggered the decline of almost all differential terpenoids, except for β-caryophyllene, which was up-regulated by mycorrhizas under drought, suggesting potential increase in volatile organic compounds to initiate plant defense responses. This study provided an overview of AMF-induced metabolites and metabolic pathways in plants under drought, focusing on the terpenoid profile.

Zobrazit více v PubMed

Allen M. F. (2006). “Water dynamics of mycorrhizas in arid soils,” in Fungi in Biogeochemical Cycles, ed. Gadd G. M. (Cambridge, UK: Cambridge University Press; ), 74–97. doi: 10.1017/CBO9780511550522.005 DOI

Alseekh S., Bermudez L., De Haro L. A., Fernie A. R., Carrari F. (2018). Crop metabolomics: From diagnostics to assisted breeding. Metabolomics 14, 1–13. doi: 10.1007/s11306-018-1446-5, PMID: PubMed DOI

Amrutha S., Parveen A. B. M., Muthupandi M., Vishnu K., Bisht S. S., Sivakumar V., et al. . (2021). Characterization of Eucalyptus camaldulensis clones with contrasting response to short-term water stress response. Acta Physiol. Plant. 43, 1–13. doi: 10.1007/s11738-020-03175-0 DOI

Bernardo L., Carletti P., Badeck F. W., Rizza F., Morcia C., Ghizzoni R., et al. . (2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol. Bioch. 137, 203–212. doi: 10.1016/j.plaphy.2019.02.007 PubMed DOI

Brundrett M., Melville L., Peterson L. (1994). Practical Methods in Mycorrhiza Research. University of Guelph, Guelph, Ontario, Canada: Mycologue Publications.

Carrera F. P., Noceda C., Maridueña-Zavala M. G., Cevallos-Cevallos J. M. (2021). Metabolomics, a powerful tool for understanding plant abiotic stress. Agronomy 11:824. doi: 10.3390/agronomy11050824 DOI

Cheng H. Q., Fan Q. F., Wu Q. S. (2019). Effects of indigenous and exotic Rhizoglomus intraradices strains on trifoliate orange seedlings. Biotechnology 18, 42–48. doi: 10.3923/biotech.2019.42.48 DOI

Cheng H. Q., Giri B., Wu Q. S., Zou Y. N., Kuča K. (2021a). Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Arch. Agron. Soil Sci., doi: 10.1080/03650340.2021.1878497 DOI

Cheng H. Q., Zou Y. N., Wu Q. S., Kuča K. (2021b). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Front. Plant Sci. 12:659694. doi: 10.3389/fpls.2021.659694, PMID: PubMed DOI PMC

Cheng X. F., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2021c). Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol. Biochem. 162, 27–35. doi: 10.1016/j.plaphy.2021.02.026, PMID: PubMed DOI

Eirini S., Paschalina C., Ioannis T., Kortessa D. T. (2017). Effect of drought and salinity on volatile organic compounds and other secondary metabolites of Citrus aurantium leaves. Nat. Prod. Commun. 12, 193–196. PMID: PubMed

Fontana A., Reichelt M., Hempel S., Gershenzon J., Unsicker S. B. (2009). The effect of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J. Chem. Ecol. 35, 833–843. doi: 10.1007/s10886-009-9654-0, PMID: PubMed DOI PMC

Giordano M., Petropoulos S. A., Rouphael Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11:463. doi: 10.3390/agriculture11050463 DOI

Govindarajulu M., Pfeffer P. E., Jin H., Abubaker J., Douds D. D., Allen J. W., et al. . (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823. doi: 10.1038/nature03610, PMID: PubMed DOI

He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 262:108745. doi: 10.1016/j.scienta.2019.108745 DOI

Jiang Y. F. (2012). The regulation and biosynthesis of the terpenoid volatile involved into the floral scent and stress defense in 5 landscape plant species. [doctor’s thesis]. [Yangling, Shaanxi, China]: Northwest A & F University.

Kaur S., Suseela V. (2020). Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Meta 10:355. doi: 10.3390/metabo10080335, PMID: PubMed DOI PMC

Khalil H. A., El-Ansary D. O. (2020). Morphological, physiological and anatomical responses of two olive cultivars to deficit irrigation and mycorrhizal inoculation. Eur. J. Hortic. Sci. 85, 51–62. doi: 10.17660/eJHS.2020/85.1.6 DOI

Kleine S., Müller C. (2014). Drought stress and leaf herbivory affect root terpenoid concentrations and growth of Tanacetum vulgare. J. Chem. Ecol. 40, 1115–1125. doi: 10.1007/s10886-014-0505-2, PMID: PubMed DOI

Kokkoris V., Stefani F., Dalpe Y., Dettman J., Corradi N. (2020). Nuclear dynamics in the arbuscular mycorrhizal fungi. Trends Plant Sci. 25, 765–778. doi: 10.1016/j.tplants.2020.05.002, PMID: PubMed DOI

Li X. D., Wang X. L., Wang Q., Zhang Y., Cai L. (2017). Metabonomics analysis of tall fescue leaves under drought stress. Chin. J. Grassl. 9, 122–126. doi: 10.19578/j.cnki.ahfs.2017.02.014 DOI

Maier W., Hammer K., Dammann U., Schulz B., Strack D. (1997). Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae. Planta 202, 36–42. doi: 10.1007/s004250050100 DOI

Malhi G. S., Kaur M., Kaushik P., Alyemeni M. N., Alsahli A. A., Ahmad P. (2021). Arbuscular mycorrhiza in combating abiotic stress in vegetables: An eco-friendly approach. Saudi J. Biol. Sci. 28, 1465–1476. doi: 10.1016/j.sjbs.2020.12.001, PMID: PubMed DOI PMC

Manukyan A. (2019). Secondary metabolites and their antioxidant capacity of Caucasian endemic thyme (Thymus transcaucasicus Ronn.) as affected by environmental stress. J. Appl. Res. Med. Aroma. Plants. 13:100209. doi: 10.1016/j.jarmap.2019.100209 DOI

Meng L. L., He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant Soil Environ. 66, 183–189. doi: 10.17221/100/2020-PSE DOI

Phillips J. M., Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161. doi: 10.1016/S0007-1536(70)80110-3 DOI

Podda A., Pollastri S., Bartolini P., Pisuttu C., Pellegrini E., Nali C., et al. . (2019). Drought stress modulates secondary metabolites in Brassica oleracea L. convar. Acephala (DC) Alef, var. sabellica L. J. Sci. Food Agric. 99, 5533–5540. doi: 10.1002/jsfa.9816, PMID: PubMed DOI

Quan J. X. (2013). The role of terpenoids in plants and its application. Bot. Res. 2, 106–108. doi: 10.12677/BR.2013.24018 DOI

Rapparini F., Llusia J., Penuelas J. (2007). Effect of arbuscular mycorrhizal (AM) colonization on terpene emmision and content of Artemisia annua L. Plant Biol. 10, 108–122. doi: 10.1055/s-2007-964963, PMID: PubMed DOI

Rivero J., Alvarez D., Flors V., Azcon-Aguilar C., Pozo M. J. (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol. 220, 1322–1336. doi: 10.1111/nph.15295, PMID: PubMed DOI

Rivero J., Gamir J., Aroca R., Pozo M. J., Flors V. (2015). Metabolic transition in mycorrhizal tomato roots. Front. Microbiol. 6:598. doi: 10.3389/fmicb.2015.00598, PMID: PubMed DOI PMC

Salvioli A., Zouari I., Chalot M., Bonfate P. (2012). The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol. 12:44. doi: 10.1186/1471-2229-12-44, PMID: PubMed DOI PMC

Sheteiwy M. S., Ali D. F. I., Xiong Y. C., Brestic M., Skalicky M., Hamoud Y. A., et al. . (2021). Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 21, 1–21. doi: 10.1186/s12870-021-02949-z PubMed DOI PMC

Shi Y. J., Wu X. Y., Tang Y., Mi J. X., Wan X. Q. (2020). Metabonomic analysis of Chenopodium quinoa under water stress at flowering stage. J. Henan Agric. Univ. 54, 921–930.doi: 10.16445/j.cnki.1000-2340.2020.06.003 DOI

Teixeira W. F., Soares L. H., Fagan E. B., Mello S. C., Reichardt K., Dourado-Neto D. (2020). Amino acids as stress reducers in soybean plant growth under different water-deficit conditions. J. Plant Growth Regul. 39, 905–919. doi: 10.1007/s00344-019-10032-z DOI

Turtola S., Manninen A. M., Rikala R., Kainulainen P. (2003). Drought stress alters the concentration of wood terpenoids in scots pine and Norway spruce seedlings. J. Chem. Ecol. 29, 1981–1995. doi: 10.1023/A:1025674116183, PMID: PubMed DOI

Whiteside M. D., Garcia M. O., Treseder K. K. (2012). Amino acid uptake in arbuscular mycorrhizal plants. PLoS One 7:e47643. doi: 10.1371/journal.pone.0047643, PMID: PubMed DOI PMC

Wiklund S., Johansson E., Sjoestroem L., Mellerowicz E. J., Edlund U., Shockcor J. P., et al. . (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. doi: 10.1021/ac0713510, PMID: PubMed DOI

Wu Q. S., He J. D., Srivastava A. K., Zou Y. N., Kuca K. (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 39, 1149–1158. doi: 10.1093/treephys/tpz039, PMID: PubMed DOI

Xie M. M., Chen S. M., Zou Y. N., Srivastava A. K., Rahman M. M., Wu Q. S., et al. . (2021). Effects of Rhizophagus intraradices and rhizobium trifolii on growth and N assimilation of white clover. Plant Growth Regul. 93, 311–318. doi: 10.1007/s10725-020-00689-y DOI

Yang X., Lu M., Wang Y., Wang Y., Liu Z., Chen S. (2021). Response mechanism of plants to drought stress. Horticulturae 7:50. doi: 10.3390/horticulturae7030050 DOI

Yang C. X., Zhao W. N., Wang Y. N., Zhang L., Huang S. C., Li L. X. (2020). Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi. Microorganisms 8:327. doi: 10.3390/microorganisms8030327, PMID: PubMed DOI PMC

Zhang F., Zou Y. N., Wu Q. S. (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci. Hortic. 229, 132–136. doi: 10.1016/j.scienta.2017.10.038 DOI

Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 171:103962. doi: 10.1016/j.envexpbot.2019.103926 DOI

Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuča K. (2021). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front. Plant Sci. 11:600792. doi: 10.3389/fpls.2020.600792, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...