Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Yz2021328
2021 Undergraduate Innovation and Entrepreneurship Training Program of Yangtze University
SCXX-XZCG-22016
Hubei Province '14th Five-Year' Major Science and Technology Aid Tibet project
[2022]LYKJ10
Hubei Forestry Science and Technology Support Key Project
RSP2023R134
Researchers Supporting Project Number, King Saud University, Riyadh, Saudi Arabia
PubMed
36849930
PubMed Central
PMC9972670
DOI
10.1186/s12870-023-04111-3
PII: 10.1186/s12870-023-04111-3
Knihovny.cz E-zdroje
- Klíčová slova
- Juglone, Metabolite, Nut fruits, Phenylalanine, Symbiosis, Walnut, Water deficit,
- MeSH
- Juglans * MeSH
- metabolomika MeSH
- mykorhiza * MeSH
- období sucha MeSH
- odolnost proti suchu MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Arbuscular mycorrhizal fungi (AMF) have a positive effect on drought tolerance of plants after establishing reciprocal resymbiosis with roots, while the underlying mechanism is not deciphered. Metabolomics can explain the mechanism of plant response to environmental stress by analyzing the changes of all small molecular weight metabolites. The purpose of this study was to use Ultra High Performance Liquid Chromatography Q Exactive Mass Spectrometer to analyze changes in root metabolites of walnut (Juglans regia) after inoculation with an arbuscular mycorrhizal fungus Diversispora spurca under well-watered (WW) and drought stress (DS). RESULTS: Sixty days of soil drought significantly inhibited root mycorrhizal colonization rate, shoot and root biomass production, and leaf water potential in walnut, while AMF inoculation significantly increased biomass production and leaf water potential, accompanied by a higher increase magnitude under DS versus under WW. A total of 3278 metabolites were identified. Under WW, AMF inoculation up-regulated 172 metabolites and down-regulated 61 metabolites, along with no changes in 1104 metabolites. However, under DS, AMF inoculation up-regulated 49 metabolites and down-regulated 116 metabolites, coupled with no changes in 1172 metabolites. Among them, juglone (a quinone found in walnuts) as the first ranked differential metabolite was up-regulated by AMF under WW but not under DS; 2,3,5-trihydroxy-5-7-dimethoxyflavanone as the first ranked differential metabolite was increased by AMF under DS but not under WW. The KEGG annotation showed a large number of metabolic pathways triggered by AMF, accompanied by different metabolic pathways under WW and DS. Among them, oxidative phosphorylation and phenylalanine metabolism and biosynthesis were triggered by AMF in response to WW and DS, where N-acetyl-L-phenylalanine was induced by AMF to increase under DS, while decreasing under WW. CONCLUSION: This study provides new insights into the metabolic mechanisms of mycorrhiza-enhanced drought tolerance in walnuts.
Zobrazit více v PubMed
Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, et al. Study of the main constituents of some authentic walnut oils. J Agric Food Chem. 2005;53:4853–4860. doi: 10.1021/jf0478354. PubMed DOI
Fu BZ, Zou LL. De novo transcriptome assembly and comparison of walnut (Juglans regia L.) cv. Qingxiang organs: roots, stems and leaves. Swift J Agric Res. 2018;4:1–20.
Wang ZY. Preliminary studies on drought resistance of different walnut cultivats. Thesis for Master’s degree. Yangling: Northwest A & F University; 2014. pp. 1–48.
Vahdati K, Lotfi N, Kholdebarin B, Hassani D, Amiri R, Mozaffari MR, et al. Screening for drought-tolerant genotypes of persian walnuts (Juglans regia L.) during seed germination. HortScience. 2009;44:1815–1819. doi: 10.21273/HORTSCI.44.7.1815. DOI
Ma WY, Qin QY, Zou YN. Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression. Front Plant Sci. 2022;13:1089420. doi: 10.3389/fpls.2022.1089420. PubMed DOI PMC
Ahluwalia O, Singh PC, Bhatia R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain. 2021;5:100032.
Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res. 2021;242:126626. doi: 10.1016/j.micres.2020.126626. PubMed DOI
Berger F, Gutjahr C. Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr Opin Plant Biol. 2021;59:101994. doi: 10.1016/j.pbi.2020.101994. PubMed DOI
Dey M, Ghosh S. Arbuscular mycorrhizae in plant immunity and crop pathogen control. Rhizosphere. 2022;22:100524. doi: 10.1016/j.rhisph.2022.100524. DOI
Mitra D, Djebaili R, Pellegrini M, Mahakur B, Sarker A, Chaudhary P, et al. Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions. J Plant Nutr. 2021;44:1993–2028. doi: 10.1080/01904167.2021.1881552. DOI
Zou YN, Wu QS, Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021;23:50–57. doi: 10.1111/plb.13161. PubMed DOI
Ding YE, Zou YN, Wu QS, Kuča K. Mycorrhizal fungi regulate daily rhythm of circadian clock in trifoliate orange under drought stress. Tree Physiol. 2022;42:616–628. doi: 10.1093/treephys/tpab132. PubMed DOI
Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, Hamoud YA, et al. Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and bradyrhizobium under drought stress. BMC Plant Biol. 2021;21:195. doi: 10.1186/s12870-021-02949-z. PubMed DOI PMC
Cheng S, Zou YN, Kuča K, Hashem A, Abd Allah EF, Wu QS. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front Microbiol. 2021;12:809473. doi: 10.3389/fmicb.2021.809473. PubMed DOI PMC
Zou YN, Zhang F, Srivastava AK, Wu QS, Kuča K. Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front Plant Sci. 2021;11:600792. doi: 10.3389/fpls.2020.600792. PubMed DOI PMC
AbdElgawad H, Ahmed M, Mohammed AE, Alotaibi MO, Yehia RS, Selim S, et al. Increasing atmospheric CO2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants. Chemosphere. 2022;296:134044. doi: 10.1016/j.chemosphere.2022.134044. PubMed DOI
Sheteiwy MS, Abd Elgawad H, Xiong YC, Macovei A, Brestic M, Skalicky M, et al. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol Plant. 2021;172:2153–2169. doi: 10.1111/ppl.13454. PubMed DOI
Zhang L, Ji HW, Huang XJ, Wang F, Liu J. Plant metabolomics and its application in tobacco. Acta Tabacaria Sin. 2015;21:126–134.
Liang SM, Zhang F, Zou YN, Kuča K, Wu QS. Metabolomics analysis reveals drought responses of trifoliate orange by arbuscular mycorrhizal fungi with a focus on terpenoid profile. Front Plant Sci. 2021;12:740524. doi: 10.3389/fpls.2021.740524. PubMed DOI PMC
Yang CX, Zhao WN, Wang YN, Zhang L, Huang SC, Li LX. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi. Microorganisms. 2020;8:327. doi: 10.3390/microorganisms8030327. PubMed DOI PMC
Rivero J, Alvarez D, Flors V, Azcon-Aguilar C, Pozo MJ. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol. 2018;220:1322–1336. doi: 10.1111/nph.15295. PubMed DOI
Bernardo L, Carletti P, Badeck F, Rizza F, Morcia C, Ghizzoni R, et al. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol Biochem. 2019;137:203–212. doi: 10.1016/j.plaphy.2019.02.007. PubMed DOI
Ma WY, Wu QS, Xu YJ, Kuča K. Exploring mycorrhizal fungi in walnut with a focus on physiological roles. Not Bot Horti Agrobo. 2021;49:12363. doi: 10.15835/nbha49212363. DOI
Huang GM, Zou YN, Wu QS, Xu YJ, Kuča K. Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil Environ. 2020;66:295–302. doi: 10.17221/240/2020-PSE. DOI
Mortier E, Lamotte O, Martin-Laurent F, Recorbet G. Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi. A review. Agron Sustain Dev. 2020;40:43. doi: 10.1007/s13593-020-00647-y. DOI
Behrooz A, Vahdati K, Rejali F, Lotfi M, Leslie C. Effects of endomycorrhizal fungi and drought stress on nutrient acquisition of walnut (Juglans regia L) J Res Biol. 2019;9:2644–2655.
Behrooz A, Vahdati K, Rejali F, Lotfi M, Sarikhani S, Leslie C. Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience. 2019;54:1087–1092. doi: 10.21273/HORTSCI13961-19. DOI
Zhang F, Zou YN, Wu QS. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci Hortic. 2018;229:132–136. doi: 10.1016/j.scienta.2017.10.038. DOI
Islam AKMM, Widhalm JR. Agricultural uses of juglone: opportunities and challenges. Agronomy. 2020;10:1500. doi: 10.3390/agronomy10101500. DOI
Achatz M, Morris EK, Müller F, Hilker M, Rillig MC. Soil hypha-mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Funct Ecol. 2014;28:1020–1029. doi: 10.1111/1365-2435.12208. DOI
Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, et al. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 2020;9:1098. doi: 10.3390/antiox9111098. PubMed DOI PMC
Braun HP. The oxidative phosphorylation system of the mitochondria in plants. Mitochondrion. 2020;53:66–75. doi: 10.1016/j.mito.2020.04.007. PubMed DOI
Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 2008;148:402–413. doi: 10.1104/pp.108.121400. PubMed DOI PMC
Li S, Yang W, Guo J, Li X, Lin J, Zhu X. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol Biochem. 2020;154:1–10. doi: 10.1016/j.plaphy.2020.05.025. PubMed DOI
Patonnier MP, Peltier JP, Marigo G. Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L stomata. J Exp Bot. 1999;50:1223–1229. doi: 10.1093/jexbot/50.336.1223. DOI
Yadavalli R, Ratnapuram H, Motamarry S, Reddy CN, Ashokkumar V, Kuppam C. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Conv Bioref. 2022;12:683–691. doi: 10.1007/s13399-020-01044-x. DOI
Liu XQ, Cheng S, Aroca R, Zou YN. Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress. Environ Exp Bot. 2022;204:105089. doi: 10.1016/j.envexpbot.2022.105089. DOI
Yang A, Kong L, Wang H, Yao X, Xie F, Wang H, et al. Response of soybean root to phosphorus deficiency under sucrose feeding: insight from morphological and metabolome characterizations. Biomed Res Int. 2020;2020:2148032. doi: 10.1155/2020/2148032. PubMed DOI PMC
Sheteiwy MS, Ahmed M, Korany SM, Alsherif EA, Mowafy AM, Chen J, et al. Arbuscular mycorrhizal fungus “Rhizophagus irregularis” impacts on physiological and biochemical responses of ryegrass and chickpea plants under beryllium stress. Environ Pollut. 2022;315:120356. doi: 10.1016/j.envpol.2022.120356. PubMed DOI
Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 1970;55:158–161. doi: 10.1016/S0007-1536(70)80110-3. DOI
Wang L, Wang Y, Hou Y, Zhu X, Zheng Y, Jin P. Physiological and metabolomic analyses of hot water treatment on amino acids and phenolic metabolisms in peach cold tolerance. Postharvest Biol Technol. 2021;179:11593. doi: 10.1016/j.postharvbio.2021.111593. DOI
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–1083. doi: 10.1038/nprot.2011.335. PubMed DOI
Wen B, Mei Z, Zeng C, Liu S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics. 2017;18:183. doi: 10.1186/s12859-017-1579-y. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC