Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression

. 2022 ; 13 () : 1089420. [epub] 20221129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36523633

Arbuscular mycorrhizal fungi (AMF) have important roles in enhancing drought tolerance of host plants, but it is not clear whether and how AMF increase drought tolerance in walnut (Juglans regia). We hypothesized that AMF could activate antioxidant defense systems and heat shock transcription factors (Hsfs) transcription levels to alleviate oxidative damage caused by drought. The walnut variety 'Liaohe No. 1' was inoculated with Diversispora spurca and exposed to well-watered (WW, 75% of the maximum soil water capacity) and drought stress (DS, 50% of the maximum soil water capacity) for 6 weeks. Plant growth, antioxidant defense systems, and expressions of five JrHsfs in leaves were studied. Such drought treatment inhibited root mycorrhizal colonization, while plant growth performance was still improved by AMF inoculation. Mycorrhizal fungal inoculation triggered the increase in soluble protein, glutathione (GSH), ascorbic acid (ASC), and total ASC contents and ascorbic peroxidase and glutathione reductase activities, along with lower hydrogen peroxide (H2O2), superoxide anion radical (O2 •-), and malondialdehyde (MDA) levels, compared with non-inoculation under drought. Mycorrhizal plants also recorded higher peroxidase, catalase, and superoxide dismutase activities than non-mycorrhizal plants under drought. The expression of JrHsf03, JrHsf05, JrHsf20, JrHsf22, and JrHsf24 was up-regulated under WW by AMF, while the expression of JrHsf03, JrHsf22, and JrHsf24 were up-regulated only under drought by AMF. It is concluded that D. spurca induced low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and part Hsfs expressions.

Zobrazit více v PubMed

Abd_Allah E. F., Hashem A., Alqarawi A. A., Bahkali A. H., Alwhibi M. S. (2015). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) merr using arbuscular mycorrhizal fungi under salt stress. Saudi J. Biol. Sci. 22, 274–283. doi: 10.1016/j.sjbs.2015.03.004 PubMed DOI PMC

Al-Arjani A. B. F., Hashem A., Abd_Allah E. F. (2020). Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra faliata boiss. Saudi J. Biol. Sci. 27, 380–394. doi: 10.1016/j.sjbs.2019.10.008 PubMed DOI PMC

Behrooz A., Vahdati K., Rejali F., Lotfi M., Sarikhani S., Leslie C. (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience. 54, 1087–1092. doi: 10.21273/HORTSCI13961-19 DOI

Bethlenfalvay G. J., Ames R. N. (1987). Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc Am. J. 51, 834–837. doi: 10.2136/sssaj1987.03615995005100030049x DOI

Bi Y. L., Zhou H. L., Ma S. P., Gao Y. K. (2021). Effects of bacterial inoculation on drought tolerance and phenotypic structure of peanut: Take coal mining area of northern shaanxi as example. J. China Coal Soc. 46, 1936–1944. doi: 10.13225/j.cnki.jccs.ST21.0499 DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3 PubMed DOI

Cao M. A., Zhang F., Abd_Allah E. F., Wu Q. S. (2022). Mycorrhiza improves cold tolerance of Satsuma orange by inducing antioxidant enzyme gene expression. Biocell. 46, 1959–1966. doi: 10.32604/biocell.2022.020391 DOI

Cheng S., Zou Y. N., Kuča K., Hashem A., Abd_Allah E. F., Wu Q. S. (2021). Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front. Microbiol. 12, 809473. doi: 10.3389/fmicb.2021.809473 PubMed DOI PMC

Dossa K., Diouf D., Cissé N. (2016). Genome-wide investigation of hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front. Plant Sci. 7, 1522. doi: 10.3389/fpls.2016.01522 PubMed DOI PMC

Ebrahimzadeh M. A., Nabavi S. F., Nabavi S. M. (2013). Antihemolytic activity and mineral contents of Juglans regia L. flowers. Eur. Rev. Med. Pharmaco. 17, 1881–1883. PubMed

Gaude N., Bortfeld S., Duensing N., Lohse M., Krajinski F. (2012). Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 69, 510–528. doi: 10.1111/j.1365-313X.2011.04810.x PubMed DOI

He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 262, 108745. doi: 10.1016/j.scienta.2018.08.010 DOI

Hoang T. V., Vo K. T. X., Rahman M. M., Choi S. H., Jeon J. S. (2019). Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Sci. 289, 110273. doi: 10.1016/j.plantsci.2019.110273 PubMed DOI

Ho-Plágaro T., Huertas R. L., Tamayo-Navarrete M. A. I., Blancaflor E., Gavara N., GarcA-Garrido J. M. (2021). A novel putative microtubule-associated protein is involved in arbuscule development during arbuscular mycorrhiza formation. Plant Cell Physiol. 62, 306–320. doi: 10.1016/j.plantsci.2019.110273 PubMed DOI PMC

Huang G. M., Zou Y. N., Wu Q. S., Xu Y. J. (2020). Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil Environ. 66, 295–302. doi: 10.17221/240/2020-PSE DOI

Kohler J., Hernández J. A., Caravaca F., Roldán A. (2009). Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65, 245–252. doi: 10.1016/j.envexpbot.2008.09.008 DOI

Li L. (2009). Experimental guidance of the plant physiology module. (Beijing, China: Science Press; ).

Liang S. M., Zhang F., Zou Y. N., Kuča K., Wu Q. S. (2021). Metabolomics analysis reveals drought responses of trifoliate orange by arbuscular mycorrhizal fungi with a focus on terpenoid profile. Front. Plant Sci. 12, 740524. doi: 10.3389/fpls.2021.740524 PubMed DOI PMC

Li Y.L., Liu Y. F., Zhang J. G. (2010). Advances in the research on the AsA-GSH cycle in horticultural crops. Front. Agric. China. 4, 84–90. doi: 10.1007/s11703-009-0089-8 DOI

Liu B., Jing D., Liu F., Ma H., Liu X., Peng L. (2021). Serendipita indica alleviates drought stress responses in walnut (Juglans regia L.) seedlings by stimulating osmotic adjustment and antioxidant defense system. Appl. Microbiol. Biotechnol. 105, 8951–8968. doi: 10.1007/s00253-021-11653-9 PubMed DOI

Liu X., Meng P., Yang G., Zhang M., Peng S., Zhai M. Z. (2020). Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC Genomics. 21, 474. doi: 10.1186/s12864-020-06879-2 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCt method. Methods. 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI

Li Q. S., Xie Y. C., Rahman M. M., Hashem A., Abd_Allah E. F., Wu Q. S. (2022). Arbuscular mycorrhizal fungi and endophytic fungi activate leaf antioxidant defense system of lane late navel orange. J. Fungi. 8, 282. doi: 10.3390/jof8030282 PubMed DOI PMC

Li J. W., Yan S. L., Huang Y. C., Xia X. X., Chu L. F., Li C. Y., et al. . (2020). Physiological and biochemical responses of pecan seedlings to drought stress. J. Nucl. Agric. Sci. 34, 2326–2334. doi: 10.11869/j.issn.100-8551.2020.10.2326 DOI

Luca P., Claudio F., Cristina C., Raffaele T., Mario B. (2018). Kernel oil content and oil composition in walnut (Juglans regia l.) accessions from north-Eastern Italy. J. Sci. Food Agric. 98, 955–962. doi: 10.1002/jsfa.8542 PubMed DOI

Lu Q. Q., Song X. S., Yan D. H. (2012). Effects of drought stress on photosynthetic physiological characteristics in soybean seeding. Chin. Agric. Sci. Bull. 28, 42–47.

Ma W. Y., Wu Q. S., Xu Y. J., Kuča K. (2021). Exploring mycorrhizal fungi in walnut with a focus on physiological roles. Not. Bot. Horti Agrobo. 49, 12363. doi: 10.15835/nbha49212363 DOI

Miller G., Shulaev V., Mittler R. (2008). Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481–489. doi: 10.1111/j.1399-3054.2008.01090.x PubMed DOI

Miller G., Suzuki N., Ciftci-Yilmaz S., Mittlerl R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467. doi: 10.1111/j.1365-3040.2009.02041.x PubMed DOI

Mohanta T. K., Bashir T., Hashem A., Abd_Allah E. F., Khan A. L., Al-Harrasi A. S. (2018). Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. Plant Growth Regul. 37, 1033–1049. doi: 10.1007/s00344-018-9833-8 DOI

Noctor G. (2006). Metabolic signalling in defence and stress: The central roles of soluble redox couples. Plant Cell Environ. 29, 409–425. doi: 10.1111/j.1365-3040.2005.01476.x PubMed DOI

Phillips J. M., Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161. doi: 10.1016/S0007-1536(70)80110-3 DOI

Ponder F. (1984). Growth and mycorrhizal development of potted white ash and black walnut fertilized by two methods. Can. J. Bot. 62, 509–512. doi: 10.1139/B84-075 DOI

Qadir S. U., Raja V., Siddiqui W. A., Shah T., Alansi S., El-Sheikh M. A. (2022). Ascorbate glutathione antioxidant system alleviates fly ash stress by modulating growth physiology and biochemical responses in Solanum lycopersicum . Saudi J. Biol. Sci. 29, 1322–1336. doi: 10.1016/j.sjbs.2021.12.013 PubMed DOI PMC

Saroy K., Garg N. (2021). Relative effectiveness of arbuscular mycorrhiza and polyamines in modulating ROS generation and ascorbate-glutathione cycle in Cajanus cajan under nickel stress. Environ. Sci. Poll. Res. 28, 48872–48889. doi: 10.1007/s11356-021-13878-7 PubMed DOI

Si W. N., Liang Q. Z., Chen L., Song F. Y., Chen Y., Jiang H. (2021). Ectopic overexpression of maize heat stress transcription factor ZmHSf05 confers drought tolerance in transgenic rice. Genes. 12, 1568. doi: 10.3390/genes12101568 PubMed DOI PMC

Sudhakar C., Lakshmi A., Giridarakumar S. (2001). Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus alba l.) under NaCl salinity. Plant Sci. 161, 613–619. doi: 10.1016/S0168-9452(01)00450-2 DOI

Tan Y., He C. Z., Guo L. H. (2015). Effect of heat shock factor AtHsfAla on physiological indexes in Arabidopsis thaliana seedlings in drought. J. Kunming Univ. 37, 64–68. doi: 10.14091/j.cnki.kmxyxb.2015.03.015 DOI

Thioye B., Legras M., Castel L., Hirissou F., Trinsoutrot-Gattin I. (2022). Understanding arbuscular mycorrhizal colonization in walnut plantations: The contribution of cover crops and soil microbial communities. Agriculture. 12, 1. doi: 10.3390/agriculture12010001 DOI

Tyagi J., Varma A., Pudake R. N. (2017). Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur. J. Soil Biol. 81, 1–10. doi: 10.1016/j.ejsobi.2017.05.007 DOI

Vahdati K., Lotfi N., Kholdebarin B., Hassani D., Amiri R., Mozaffari M. R., et al. . (2009). Screening for drought-tolerant genotypes of persian walnuts (Juglans regia l.) during seed germination. HortScience. 44, 1815–1819. doi: 10.21273/HORTSCI.44.7.1815 DOI

Verma G., Srivastava D., Tiwari P., Chakrabarty D. (2019). “ROS modulation in crop plants under drought stress,” in Reactive oxygen, nitrogen and sulfur species in plants: Production, metabolism, signaling and defense mechanisms. Eds. Hasanuzzaman M., Fotopoulos V., Nahar K., Fujita M. (West Sussex, UK: John Wiley & Sons Ltd.), 311–336. doi: 10.1002/9781119468677.ch13 DOI

Villani A., Tommasi F., Paciolla C. (2021). The arbuscular mycorrhizal fungus Glomus viscosum improves the tolerance to verticillium wilt in Artichoke artichoke by modulating the antioxidant defense systems. Cells. 10, 1944. doi: 10.3390/cells10081944 PubMed DOI PMC

Wang J. (2015). Master’s thesis. (Jingzhou, China: Yangtze University; ).

Wang P., Yin L., Liang D., Li C., Ma F. W., Yue Z. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate-glutathione cycle. J. Pineal Res. 53, 11–20. doi: 10.1111/j.1600-079X.2011.00966.x PubMed DOI

Wu Q. S., Srivastava A. K., Zou Y. N. (2013). AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 164, 77–87. doi: 10.1016/j.scienta.2013.09.010 DOI

Wu Q. S., Xia R. X., Zou Y. N. (2006). Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol. 163, 1101–1110. doi: 10.1016/j.jplph.2005.09.001 PubMed DOI

Zhai R. B., Zhu J. H. (2021). Identification and function anlysis of mulberry heat stess trascription factor gene HSF10-2 . Sci. Sericult. 47, 111–118. doi: 10.13441/j.cnki.cykx.2021.02.002 DOI

Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 171, 103962. doi: 10.1016/j.envexpbot.2019.103926 DOI

Zou Y. N., Wu Q. S., Kuča K. (2021). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 23, 50–57. doi: 10.1111/plb.13161 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace