• This record comes from PubMed

Two different strategies of Diversispora spurca-inoculated walnut seedlings to improve leaf P acquisition at low and moderate P levels

. 2023 ; 14 () : 1140467. [epub] 20230223

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Walnut (Juglans regia) is an important nut tree species in the world, whereas walnut trees often face inadequate phosphorus (P) levels of soil, negatively limiting its growth and yield. Arbuscular mycorrhizal fungi (AMF) can colonize walnut roots, but whether and how AMF promotes walnut growth, physiological activities, and P acquisition is unclear. The present study aimed to evaluate the effects of Diversispora spurca on plant growth, chlorophyll component concentrations, leaf gas exchange, sugar and P concentrations, and expression of purple acid phosphatase (PAP) and phosphate transporter (PT) genes in leaves of J. regia var. Liaohe 1 seedling under moderate (100 μmol/L P) and low P (1 μmol/L P) levels conditions. Three months after inoculation, the root mycorrhizal colonization rate and soil hyphal length were 45.6-53.2% and 18.7-39.9 cm/g soil, respectively, and low P treatment significantly increased both root mycorrhizal colonization rate and soil hyphal length. Low P levels inhibited plant growth (height, stem diameter, and total biomass) and leaf gas exchange (photosynthetic rate, transpiration rate and stomatal conductance), while AMF colonization significantly increased these variables at moderate and low P levels. Low P treatment limited the level of chlorophyll a, but AMF colonization did not significantly affect the level of chlorophyll components, independent on soil P levels. AMF colonization also increased leaf glucose at appropriate P levels and leaf fructose at low P levels than non-AMF treatment. AMF colonization significantly increased leaf P concentration by 21.0-26.2% than non-AMF colonization at low and moderate P levels. Low P treatment reduced the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 in the inoculated plants, whereas AMF colonization up-regulated the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 at moderate P levels, although AMF did not significantly alter the expression of JrPAPs and JrPTs at low P levels. It is concluded that AMF improved plant growth, leaf gas exchange, and P acquisition of walnut seedlings at different P levels, where mycorrhizal promotion of P acquisition was dominated by direct mycorrhizal involvement in P uptake at low P levels, while up-regulation of host PAPs and PTs expressions at moderate P levels.

See more in PubMed

Adeyemi N. O., Atayese M. O., Sakariyawo O. S., Azeez J. O., Olubode A. A., Ridwan M., et al. . (2021). Influence of different arbuscular mycorrhizal fungi isolates in enhancing growth, phosphorus uptake and grain yield of soybean in a phosphorus deficient soil under field conditions. Commun. Soil Sci. Plant Analy. 52, 1171–1183. doi: 10.1080/00103624.2021.1879117 DOI

Behrooz A., Vahdati K., Rejali F., Lotfi M., Sarikhani S., Leslie C. (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54, 1087–1092. doi: 10.21273/HORTSCI13961-19 DOI

Bethlenfalvay G. J., Ames R. N. (1987). Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc Am. J. 51, 834–837. doi: 10.2136/sssaj1987.03615995005100030049x DOI

Cao M. A., Liu R. C., Xiao Z. Y., Hashem A., Abd Allah E. F., Alsayed M. F., et al. . (2022). Symbiotic fungi alter the acquisition of phosphorus in Camellia oleifera through regulating root architecture, plant phosphate transporter gene expressions and soil phosphatase activities. J. Fungi 8, 800. doi: 10.3390/jof8080800 PubMed DOI PMC

Etesami H., Jeong B. R., Glick B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to p uptake by plant. Front. Plant Sci. 12, 699618. doi: 10.3389/fpls.2021.699618 PubMed DOI PMC

Feng G., Zhang F., Li X., Tian C., Tang C., Rengel Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12, 185–190. doi: 10.1007/s00572-002-0170-0 PubMed DOI

He J. D., Li J. L., Wu Q. S. (2019). Effects of Rhizoglomus intraradices on plant growth and root endogenous hormones of trifoliate orange under salt stress. J. Anim. Plant Sci. 29, 245–250.

He W. X., Wu Q. S., Hashem A., Abd Allah E. F., Muthuramalingam P., Al-Arjani A.-B. F., et al. . (2022). Effects of symbiotic fungi on sugars and soil fertility and structure-mediated changes in plant growth of Vicia villosa . Agriculture 12, 1523. doi: 10.3390/agriculture12101523 DOI

Huang Y. X., Lin Y. L., Zhang L. P., Wu F., Yang Y., Tan M. X. (2022). Effects of AM fungi and inorganic phosphorus on phosphorus uptake and growth soil phosphorus fraction of Camellia oleifera seedlings. For. Res. 35, 33–41. doi: 10.13275/j.cnki.lykxyj.2022.005.004 DOI

Huang G. M., Zou Y. N., Wu Q. S., Xu Y. J., Kuča K. (2020). Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil Environ. 66, 295–302. doi: 10.17221/240/2020-PSE DOI

Li Y. F., Jin S. H., Ye Z. Q., Huang J. Q., Jiang P. K. (2010). Root morphology and physiological characteristics in carya cathayensis seedlings with low phosphorus stress. J. Zhejiang A.&F. Univ, 27, 239–245.

Li X. R., Sun J., Albinsky D., Zarrabian D., Hull R., Lee T., et al. . (2022). Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2 . Nat. Commun. 13, 6421. doi: 10.1038/s41467-022-33908-3 PubMed DOI PMC

Li C. C., Zhou J., Wang X. R., Liao H. (2019). A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant Cell Environ. 42, 2015–2027. doi: 10.1111/pce.13530 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt . Methods 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI

Luo Y. Y., Hao X. J., Zhang K. Y. (2019). Effect of inoculation of AM fungi on different phosphorus morphology of discarded soil in coal mining area. Southwest China J. Agric. Sci. 32, 381–388. doi: 10.16213/j.cnki.scjas.2019.2.026 DOI

Ma T., Ning D. L. (2021). Analysis of international competitiveness of China walnut industry. For. Sci. Technol. 64 (1), 3–7. doi: 10.13456/j.cnki.lykt.2019.12.26.0002 DOI

Ma W. Y., Qin Q. Y., Zou Y. N., Kuča K., Giri B., Wu Q. S., et al. . (2022). Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression. Front. Plant Sci. 13, 1089420. doi: 10.3389/fpls.2022.1089420 PubMed DOI PMC

Ma W. Y., Wu Q. S., Xu Y. J., Kuča K. (2021). Exploring mycorrhizal fungi in walnut with a focus on physiological roles. Not. Bot. Horti Agrobo. 49, 12363. doi: 10.15835/nbha49212363 DOI

Malhotra H., Vandana, Sharma S., Pandey R. (2018). “Phosphorus nutrition: Plant growth in response to deficiency and excess,” in Plant nutrients and abiotic stress tolerance. Eds. Hasanuzzaman M., Fujita M., Oku H., Nahar K., Hawrylak-Nowak B. (Singapore: Springer: ), 171–190. doi: 10.1007/978-981-10-9044-8_7 DOI

Mao J. H., Li R. B., Jing Y. B., Ning D. L., Li Y. P., Chen H. Y. (2022). Arbuscular mycorrhizal fungi associated with walnut trees and their effect on seedling growth. J. For. Environ. 42, 71–80. doi: 10.13324/j.cnki.jfcf.2022.01.009 DOI

Nakamori K., Takabatake R., Umehara Y., Kouchi H., Izui K., Hata S. (2002). Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter. Plant Cell Physiol. 43, 1250–1253. doi: 10.1093/pcp/pcf141 PubMed DOI

Phillips J. M., Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc 55, 158–161. doi: 10.1016/S0007-1536(70)80110-3 DOI

Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., et al. . (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–465. doi: 10.1038/35106601 PubMed DOI

Sandhu J., Rouached H. (2022). All roads lead to PHO1. Nat. Plants 8, 986–987. doi: 10.1038/s41477-022-01242-7 PubMed DOI

Schenk G., Mitić N., Hanson G. R., Comba P. (2013). Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coordin. Chem. Rev. 257, 473–482. doi: 10.1016/j.ccr.2012.03.020 DOI

Serr E. F. (1960). Walnut orchards on volcanic soils deficient in phosphorus. Calif. Agric. 14, 6–7.

Shao Y. D., Hu X. C., Wu Q. S., Yang T. Y., Srivastava A. K., Zhang D. J., et al. . (2021). Mycorrhizas promote p acquisition of tea plants through changes in root morphology and p transporter gene expression. South Afr. J. Bot. 137, 455–462. doi: 10.1016/j.sajb.2020.11.028 DOI

Smith S. E., Anderson I. C., Smith F. A. (2015). Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. Annu. Plant Rev. 48, 409–440. doi: 10.1002/9781118958841.ch14 DOI

Smith S. E., Smith F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250. doi: 10.1146/annurev-arplant-042110-103846 PubMed DOI

Smith S. E., Smith F. A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104, 1–13. doi: 10.3852/11-229 PubMed DOI

Song Y. C., Li X. L., Feng G. (2001). Effect of VAM fungi on phosphatase activity in maize rhizosphere. Chin. J. Appl. Ecol. 12, 593–596. PubMed

Wang Y., Chen Y. F., Wu W. H. (2021). Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 63, 34–52. doi: 10.1111/jipb.13053 PubMed DOI

Wang L., Lu S., Zhang Y., Li Z., Du X., Liu D. (2014). Comparative genetic analysis of arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J. Integr. Plant Biol. 56, 299–314. doi: 10.1111/jipb.12184 PubMed DOI

Wang Q. M., Peng W. X., Lu B. J., Pei D. (2006). Histological study of in vitro adventitious roots of Juglans regia . Acta Bot. Boreal.-Occident. Sin. 26, 719–724.

Wu Q. S., Li Y., Zou Y. N., He X. H. (2015. a). Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different p levels. Mycorrhiza 25, 121–130. doi: 10.1007/s00572-014-0594-3 PubMed DOI

Wu Q. S., Srivastava A. K., Li Y. (2015. b). Effect of mycorrhizal symbiosis on growth behavior and carbohdyrate metabolism of trifoliate orange under different substrate p levels. J. Plant Growth Regul. 34, 495–508. doi: 10.1007/s00344-015-9485-x DOI

Zhang C. P. (2014). “Influence of nitrogen or phosphorous on water metabolism of juglans regia seedlings,” in Dissertation for the doctoral degree (Chinese Academy of Forestry, Beijing, China; ).

Zhang T., Hu Y., Zhang K., Tian C., Guo J. (2018). Arbuscular mycorrhizal fungi improve plant growth of ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Indust. Crops Prod. 117, 13–19. doi: 10.1016/j.indcrop.2018.02.087 DOI

Zhang Y. J., Sun F., Fettke J., Schottler M. A., Ramsden L., Fernie A. R., et al. . (2014). Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development. FEBS Lett. 588, 3726–3731. doi: 10.1016/j.febslet.2014.08.019 PubMed DOI

Zhang F., Wang P., Zou Y. N., Wu Q. S., Kuča K. (2019). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch. Agron. Soil Sci. 65, 1316–1330. doi: 10.1080/03650340.2018.1563780 DOI

Zhu X. C., Song F. B., Liu S. Q., Liu T. D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346, 189–199. doi: 10.1007/s11104-011-0809-8 DOI

Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuča K. (2021). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front. Plant Sci. 11, 600792. doi: 10.3389/fpls.2020.600792 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...