Optimization of Plant Nutrition in Aquaponics: The Impact of Trichoderma harzianum and Bacillus mojavensis on Lettuce and Basil Yield and Mineral Status
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA-ZF/2023-SI1-005
Mendel University in Brno
PubMed
38256844
PubMed Central
PMC10821075
DOI
10.3390/plants13020291
PII: plants13020291
Knihovny.cz E-zdroje
- Klíčová slova
- Lactuca sativa, Ocimum basilicum, PGPMs, bacteria, fungi, inoculation, microorganisms,
- Publikační typ
- časopisecké články MeSH
The present study aims to test the effect of a nutrient solution, with the addition of microbial inoculum, on the growth and mineral composition of 'Hilbert' and 'Barlach' lettuce cultivars (Lactuca sativa var. crispa, L.) and basil (Ocimum basilicum, L.) cultivated in a vertical indoor farm. These crops were grown in four different variants of nutrient solution: (1) hydroponic; (2) aquaponic, derived from a recirculating aquaculture system (RAS) with rainbow trout; (3) aquaponic, treated with Trichoderma harzianum; (4) aquaponic, treated with Bacillus mojavensis. The benefits of T. harzianum inoculation were most evident in basil, where a significantly higher number of leaves (by 44.9%), a higher nitrate content (by 36.4%), and increased vitamin C (by 126.0%) were found when compared to the aquaponic variant. Inoculation with T. harzianum can be recommended for growing basil in N-limited conditions. B. mojavensis caused a higher degree of removal of Na+ and Cl- from the nutrient solution (243.1% and 254.4% higher, in comparison to the aquaponic solution). This is desirable in aquaponics as these ions may accumulate in the system solution. B. mojavensis further increased the number of leaves in all crops (by 44.9-82.9%) and the content of vitamin C in basil and 'Hilbert' lettuce (by 168.3 and 45.0%) compared to the aquaponic solution. The inoculums of both microbial species used did not significantly affect the crop yield or the activity of the biofilter. The nutrient levels in RAS-based nutrient solutions are mostly suboptimal or in a form that is unavailable to the plants; thus, their utilization must be maximized. These findings can help to reduce the required level of supplemental mineral fertilizers in aquaponics.
Zobrazit více v PubMed
Goddek S., Delaide B., Mankasingh U., Ragnarsdottir K.V., Jijakli H., Thorarinsdottir R. Challenges of Sustainable and Commercial Aquaponics. Sustainability. 2015;7:4199–4224. doi: 10.3390/su7044199. DOI
Yep B., Zheng Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019;228:1586–1599. doi: 10.1016/j.jclepro.2019.04.290. DOI
Kasozi N., Tandlich R., Fick M., Kaiser H., Wilhelmi B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019;15:100221. doi: 10.1016/j.aqrep.2019.100221. DOI
Barteleme R.P., Oyserman B.O., Blom J.E., Sepulveda-Villet O.J., Newton R.J. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics. Front. Microbiol. 2018;9:8. doi: 10.3389/fmicb.2018.00008. PubMed DOI PMC
Kloas W., Gross R., Baganz D., Graupner J., Monsees H., Schmidt U., Staaks G.B.O., Suhl J., Tschirner M., Wittstock B., et al. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac. Environ. Interact. 2015;7:179–192. doi: 10.3354/aei00146. DOI
Roosta H.R., Hamidpour M. Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011;129:396–402. doi: 10.1016/j.scienta.2011.04.006. DOI
Robaina L., Pirhonen J., Mente E., Sánchez J., Goosen N. Fish Diets in Aquaponics. In: Goddek S., Joyce A., Kotzen B., Burnell G.M., editors. Aquaponics Food Production Systems—Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing; New York, NY, USA: 2019. DOI
Mitra D., Andjelkovic S., Manisha, Panneerselvam P., Chauhan M., Senapati A., Vasic T., Ganeshamurthy A.N., Verma D., Arya P., et al. Plant growth promoting microorganisms (PGPMs) helping in sustainable agriculture: Current perspective. Int. J. Agric. Sci. Vet. Med. 2019;7:50–74.
Bugbee B. Nutrient Management in Recirculating Hydroponic Culture. Acta Hortic. 2004;648:99–112. doi: 10.17660/ActaHortic.2004.648.12. DOI
Waghunde R., Shelake R.M., Sabalpara A.N. Trichoderma: A significant fungus for agriculture and environment. Afr. J. Agric. Res. 2016;11:1952–1965. doi: 10.5897/AJAR2015.10584. DOI
Mukherjee M., Mukherjee P.K., Horwitz B.A., Zachow C., Berg G., Zeilinger S. Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian J. Microbiol. 2012;52:522–529. doi: 10.1007/s12088-012-0308-5. PubMed DOI PMC
Sharma B.L., Singh S.P., Sharma M.L. Bio-degradation of Crop Residues by Trichoderma Species vis-à vis Nutrient Quality of the Prepared Compost. Sugar Tech. 2012;14:174–180. doi: 10.1007/s12355-011-0125-x. DOI
Amira D. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. Afr. J. Biotechnol. 2011;10:81. doi: 10.5897/AJB11.2751. DOI
Vázquez M.B., Barrera V., Bianchinotti V. Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils in Argentina, and their abilities to detoxify in vitro metsulfuron methyl. Botany. 2015;93:793–800. doi: 10.1139/cjb-2015-0085. DOI
Cai F., Yu G., Wang P., Wei Z., Fu L., Shen Q., Chen W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Biochem. 2013;73:106–113. doi: 10.1016/j.plaphy.2013.08.011. PubMed DOI
Abdul-Halim A.M.-A., Shivanand P., Krishnamoorthy S., Taha H. A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer. J. Appl. Biol. Biotechnol. 2023;11:5. doi: 10.7324/JABB.2023.11504. DOI
Jaroszuk-Ściseł J., Tyśkiewicz R., Nowak A., Ozimek E., Majewska M., Hanaka A., Tyśkiewicz K., Pawlik A., Janusz G. Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia. Int. J. Mol. Sci. 2019;20:4923. doi: 10.3390/ijms20194923. PubMed DOI PMC
Tyśkiewicz R., Nowak A., Ozimek E., Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022;23:2329. doi: 10.3390/ijms23042329. PubMed DOI PMC
Vinale F., Nigro M., Sivasithamparam K., Flematti G., Ghisalberti E.L., Ruocco M., Varlese R., Marra R., Lanzuise S., Eid A., et al. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 2013;347:123–129. doi: 10.1111/1574-6968.12231. PubMed DOI
Yedida I., Srivastava A., Kapulnik Y., Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 2001;235:235–242. doi: 10.1023/A:1011990013955. DOI
Kahil A.A., Hassan F.A.S., Ali E.F. Influence of bio-fertilizers on growth, yield and anthocyanin content of Hibiscus sabdariffa L. plant under Taif region conditions. Ann. Res. Rev. Biol. 2017;17:1–15. doi: 10.9734/ARRB/2017/36099. DOI
Hassan F., Ali E.F., Mahfouz S.A. Comparison between different fertilization sources, irrigation frequency and their combinations on the growth and yield of the coriander plant. Aust. J. Appl. Basic Sci. 2012;6:600–615.
Tsotetsi T., Nephali L., Malebe M., Tugizimana F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? Plants. 2022;11:2482. doi: 10.3390/plants11192482. PubMed DOI PMC
Danish M., Shahid M., Zeyad M.T., Bukhari N.A., Alkhataf F., Hatamleh A.A., Ali S. Bacillus mojavensis, a Metal-Tolerant Plant Growth-Promoting Bacterium, Improves Growth, Photosynthetic Attributes, Gas Exchange Parameters, and Alkalo-Polyphenol Contents in Silver Nanoparticle (Ag-NP)-Treated Withania somnifera L. (Ashwagandha) ACS Omega. 2022;7:13878–13893. doi: 10.1021/acsomega.2c00262. PubMed DOI PMC
Emmanuel O.C., Babalola O.O. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res. 2020;239:1265–1269. doi: 10.1016/j.micres.2020.126569. PubMed DOI
Keller-Pearson M., Liu Y., Peterson A., Pederson K., Willems L., Ané J.-M., Silva E.M. Inoculation with arbuscular mycorrhizal fungi has a more significant positive impact on the growth of open-pollinated heirloom varieties of carrots than on hybrid cultivars under organic management conditions. Agric. Ecosyst. Environ. 2020;289:106712. doi: 10.1016/j.agee.2019.106712. DOI
Rasouli F., Amini T., Asadi M., Hassanpouraghdam M.B., Aazami M.A., Ercisli S., Skrovankova S., Mlcek J. Growth and Antioxidant Responses of Lettuce (Lactuca sativa L.) to Arbuscular Mycorrhiza Inoculation and Seaweed Extract Foliar Application. Agronomy. 2022;12:401. doi: 10.3390/agronomy12020401. DOI
Boomsma C.R., Vyn T.J. Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res. 2008;108:14–31. doi: 10.1016/j.fcr.2008.03.002. DOI
Cheng S., Zou Y.-N., Kuča K., Hashem A., Fathi E., Allah A., Wu Q.-S. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front. Microbiol. 2021;12:809473. doi: 10.3389/fmicb.2021.809473. PubMed DOI PMC
Santander C., Sanhueza M., Olave J., Borie F., Valentine A., Cornejo P. Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance. J. Soil Sci. Plant Nutr. 2019;19:321–331. doi: 10.1007/s42729-019-00032-z. DOI
Ma J., Janoušková M., Li Y., Yu X., Yan Y., Zou Z., He C. Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Funct. Plant Biol. 2015;42:1158–1167. doi: 10.1071/FP15106. PubMed DOI
Chen M., Arato M., Borghi L., Nouri E., Reinhardt D. Beneficial Services of Arbuscular Mycorrhizal Fungi—From Ecology to Application. Front. Plant Sci. 2018;9:1270. doi: 10.3389/fpls.2018.01270. PubMed DOI PMC
Gravel V., Martinez C., Antoun H., Tweddell R.J. Control of greenhouse tomato root rot [Pythium ultimum] in hydroponic systems, using plant-growth-promoting microorganisms. Can. J. Plant Pathol. 2006;28:475–483. doi: 10.1080/07060660609507322. DOI
Cerozi B.S., Fitzsimmons K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci. Hortic. 2016;211:277–282. doi: 10.1016/j.scienta.2016.09.005. DOI
Sheridan C., Depuydt P., Ro M.D., Petit C., Gysegem E.V., Delaere, Petal R., Pascale S.D., Ventorino V., Meyer T.D., et al. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics. Microb. Ecol. 2017;73:378–393. doi: 10.1007/s00248-016-0855-0. PubMed DOI
Dhawi F. The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming. Metabolites. 2023;13:247. doi: 10.3390/metabo13020247. PubMed DOI PMC
Mourouzidou S., Ntinas G.K., Tsaballa A., Monokrousos N. Introducing the Power of Plant Growth Promoting Microorganisms in Soilless Systems: A Promising Alternative for Sustainable Agriculture. Sustainability. 2023;15:5959. doi: 10.3390/su15075959. DOI
Goddek S., Vermeulen T. Comparison of Lactuca sativa growth performance in conventional and RAS-based hydroponic systems. Aquac. Int. 2018;26:1377–1386. doi: 10.1007/s10499-018-0293-8. PubMed DOI PMC
Gillespie D.P., Kubota C., Miller S.A. Effects of Low pH of Hydroponic Nutrient Solution on Plant Growth, Nutrient Uptake, and Root Rot Disease Incidence of Basil (Ocimum basilicum L.) HortScience. 2020;55:1251–1258. doi: 10.21273/HORTSCI14986-20. DOI
Goddek S., Keesman K.J. The necessity of desalination technology for designing and sizing multi-loop. Desalination. 2018;428:76–85. doi: 10.1016/j.desal.2017.11.024. DOI
Andrzejak R., Janowska B. Trichoderma spp. Improves Flowering, Quality, and Nutritional Status of Ornamental Plants. Int. J. Mol. Sci. 2022;23:15662. doi: 10.3390/ijms232415662. PubMed DOI PMC
Lennard W., Goddek S. Aqaponics: The Basics. In: Goddek S., Joyce A., Kotzen B., Burnell G.M., editors. Aquaponics Food Production Systems—Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing; New York, NY, USA: 2019. Chapter 5. DOI
Yang T., Kim H.-J. Characterizing Nutrient Composition and Concentration in Tomato-, Basil- and Lettuce-Based Aquaponic and Hydroponic Systems. Water. 2020;12:1259. doi: 10.3390/w12051259. DOI
Sanchez F.A., Vivian-Rogers V.R., Urakawa H. Tilapia recirculating aquaculture systems as a source of plant growth promoting bacteria. Aquac. Res. 2019;50:2054–2065. doi: 10.1111/are.14072. DOI
Pokluda R., Kobza F. Skleníky, Fóliovníky, Využití a Pěstební Technologie. 1st ed. Profi Press s.r.o.; Praha, Czech Republic: 2011.
Rakocy J.E., Masser M.P., Losordo T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. SRAC Publ. 2006;454
Cerozi B.S., Fitzimmons K. Phosphorus dynamics modeling and mass balance in an aquaponics system. Agric. Syst. 2017;153:94–100. doi: 10.1016/j.agsy.2017.01.020. DOI
Saravanakumar K., Arasu V.S., Kathiresan K. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat. Bot. 2013;104:101–105. doi: 10.1016/j.aquabot.2012.09.001. DOI
Lopez-Baltazar J., Parent L.E., Tremblay N., Gosselin A. Sulfate accumulation and calcium balance in hydroponic tomato culture. J. Plant Nutr. 2007;25:1585–1597. doi: 10.1081/PLN-120005409. DOI
Loyless J.C., Malone R.F. A Sodium Bicarbonate Dosing Methodology for pH Management in Freshwater-Recirculating Aquaculture Systems. Progress. Fish-Cult. 1997;59:198–205. doi: 10.1577/1548-8640(1997)059<0198:ASBDMF>2.3.CO;2. DOI
Uddin A.F., Ahmad H., Hassan R., Mahbuba S., Roni M.Z. Effects of Trichoderma spp. on growth and yield characters of Bari tomato-14. Int. J. Bus. Soc. Sci. Res. 2016;4:117–122.
Vukelić I.D., Prokić L.T., Racić G.M., Pešić M.B., Bojović M.M., Sierka E.M., Kalaji H.M., Panković D. Effects of Trichoderma harzianum on Photosynthetic Characteristics and Fruit Quality of Tomato Plants. Int. J. Mol. Sci. 2021;22:6961. doi: 10.3390/ijms22136961. PubMed DOI PMC
Jamil A. Antifungal and plant growth promoting activity of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici colonizing tomato. J. Plant Prot. Res. 2021;61:243–253. doi: 10.24425/jppr.2021.137950. DOI
Chen D., Hou Q., Jia L., Sun K. Combined Use of Two Trichoderma Strains to Promote Growth of Pakchoi (Brassica chinensis L.) Agronomy. 2021;11:726. doi: 10.3390/agronomy11040726. DOI
Prajakta B.M., Suvarna P.P., Raghvendra S.P., Alok R.R. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Appl. Sci. 2019;1:1143. doi: 10.1007/s42452-019-1149-1. DOI
Kasozi N., Kaiser H., Wilhelmi B. Effect of Bacillus spp. on Lettuce Growth and Root Associated Bacterial Community in a Small-Scale Aquaponics System. Agronomy. 2021;11:947. doi: 10.3390/agronomy11050947. DOI
Pandey C., Bajpai V.K., Negi Y.K., Rather I.A., Maheshwari D.K. Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J. Biol. Sci. 2018;25:1066–1071. doi: 10.1016/j.sjbs.2018.03.003. PubMed DOI PMC
Singh B.N., Dwivedi P., Sarma B.K., Singh G.S., Singh H.B. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech. 2019;9:109. doi: 10.1007/s13205-019-1638-3. PubMed DOI PMC
Day J.A., Diener C., Otwell A.E., Tams K.E., Bebout B., Detweiler A.M., Lee M.D., Scott M.T., Ta W., Ha M., et al. Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics. PLoS ONE. 2021;16:e0247534. doi: 10.1371/journal.pone.0247534. PubMed DOI PMC
Brentrup F., Palliere C. Nitrogen Use Efficiency as an Agro-Environmental Indicator. OECD Booklet Interior Template. [(accessed on 28 August 2023)]. Available online: https://www.oecd.org/greengrowth/sustainable-agriculture/44810433.pdf.
Marsic N.K., Osvald J. Effects of different nitrogen levels on lettuce growth and nitrate accumulation in iceberg lettuce (Lactuca sativa var. capitata L.) grown hydroponically under greenhouse conditions. Gartenbauwissenschaft. 2002;67:128–134.
Phillips J.M., Hayman D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970;55:158–161. doi: 10.1016/S0007-1536(70)80110-3. DOI
Posada L.F., Alvarez J.C., Hu C.-H., de-Bashan L.E., Bashan Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J. Microbiol. Methods. 2016;128:125–129. doi: 10.1016/j.mimet.2016.05.029. PubMed DOI
Zbíral J. Analýza Rostlinného Materiálu, Jednotné Pracovní Postupy. 2nd ed. Ústřední Kontrolní a Zkušební Ústav Zemědělský; Brno, Czechia: 2002.
Holm G. Chlorophyll Mutations in Barley. Acta Agric. Scand. 1954;4:457–471. doi: 10.1080/00015125409439955. DOI