Optimization of Plant Nutrition in Aquaponics: The Impact of Trichoderma harzianum and Bacillus mojavensis on Lettuce and Basil Yield and Mineral Status

. 2024 Jan 18 ; 13 (2) : . [epub] 20240118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38256844

Grantová podpora
IGA-ZF/2023-SI1-005 Mendel University in Brno

The present study aims to test the effect of a nutrient solution, with the addition of microbial inoculum, on the growth and mineral composition of 'Hilbert' and 'Barlach' lettuce cultivars (Lactuca sativa var. crispa, L.) and basil (Ocimum basilicum, L.) cultivated in a vertical indoor farm. These crops were grown in four different variants of nutrient solution: (1) hydroponic; (2) aquaponic, derived from a recirculating aquaculture system (RAS) with rainbow trout; (3) aquaponic, treated with Trichoderma harzianum; (4) aquaponic, treated with Bacillus mojavensis. The benefits of T. harzianum inoculation were most evident in basil, where a significantly higher number of leaves (by 44.9%), a higher nitrate content (by 36.4%), and increased vitamin C (by 126.0%) were found when compared to the aquaponic variant. Inoculation with T. harzianum can be recommended for growing basil in N-limited conditions. B. mojavensis caused a higher degree of removal of Na+ and Cl- from the nutrient solution (243.1% and 254.4% higher, in comparison to the aquaponic solution). This is desirable in aquaponics as these ions may accumulate in the system solution. B. mojavensis further increased the number of leaves in all crops (by 44.9-82.9%) and the content of vitamin C in basil and 'Hilbert' lettuce (by 168.3 and 45.0%) compared to the aquaponic solution. The inoculums of both microbial species used did not significantly affect the crop yield or the activity of the biofilter. The nutrient levels in RAS-based nutrient solutions are mostly suboptimal or in a form that is unavailable to the plants; thus, their utilization must be maximized. These findings can help to reduce the required level of supplemental mineral fertilizers in aquaponics.

Zobrazit více v PubMed

Goddek S., Delaide B., Mankasingh U., Ragnarsdottir K.V., Jijakli H., Thorarinsdottir R. Challenges of Sustainable and Commercial Aquaponics. Sustainability. 2015;7:4199–4224. doi: 10.3390/su7044199. DOI

Yep B., Zheng Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019;228:1586–1599. doi: 10.1016/j.jclepro.2019.04.290. DOI

Kasozi N., Tandlich R., Fick M., Kaiser H., Wilhelmi B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019;15:100221. doi: 10.1016/j.aqrep.2019.100221. DOI

Barteleme R.P., Oyserman B.O., Blom J.E., Sepulveda-Villet O.J., Newton R.J. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics. Front. Microbiol. 2018;9:8. doi: 10.3389/fmicb.2018.00008. PubMed DOI PMC

Kloas W., Gross R., Baganz D., Graupner J., Monsees H., Schmidt U., Staaks G.B.O., Suhl J., Tschirner M., Wittstock B., et al. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac. Environ. Interact. 2015;7:179–192. doi: 10.3354/aei00146. DOI

Roosta H.R., Hamidpour M. Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011;129:396–402. doi: 10.1016/j.scienta.2011.04.006. DOI

Robaina L., Pirhonen J., Mente E., Sánchez J., Goosen N. Fish Diets in Aquaponics. In: Goddek S., Joyce A., Kotzen B., Burnell G.M., editors. Aquaponics Food Production Systems—Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing; New York, NY, USA: 2019. DOI

Mitra D., Andjelkovic S., Manisha, Panneerselvam P., Chauhan M., Senapati A., Vasic T., Ganeshamurthy A.N., Verma D., Arya P., et al. Plant growth promoting microorganisms (PGPMs) helping in sustainable agriculture: Current perspective. Int. J. Agric. Sci. Vet. Med. 2019;7:50–74.

Bugbee B. Nutrient Management in Recirculating Hydroponic Culture. Acta Hortic. 2004;648:99–112. doi: 10.17660/ActaHortic.2004.648.12. DOI

Waghunde R., Shelake R.M., Sabalpara A.N. Trichoderma: A significant fungus for agriculture and environment. Afr. J. Agric. Res. 2016;11:1952–1965. doi: 10.5897/AJAR2015.10584. DOI

Mukherjee M., Mukherjee P.K., Horwitz B.A., Zachow C., Berg G., Zeilinger S. Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian J. Microbiol. 2012;52:522–529. doi: 10.1007/s12088-012-0308-5. PubMed DOI PMC

Sharma B.L., Singh S.P., Sharma M.L. Bio-degradation of Crop Residues by Trichoderma Species vis-à vis Nutrient Quality of the Prepared Compost. Sugar Tech. 2012;14:174–180. doi: 10.1007/s12355-011-0125-x. DOI

Amira D. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. Afr. J. Biotechnol. 2011;10:81. doi: 10.5897/AJB11.2751. DOI

Vázquez M.B., Barrera V., Bianchinotti V. Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils in Argentina, and their abilities to detoxify in vitro metsulfuron methyl. Botany. 2015;93:793–800. doi: 10.1139/cjb-2015-0085. DOI

Cai F., Yu G., Wang P., Wei Z., Fu L., Shen Q., Chen W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol. Biochem. 2013;73:106–113. doi: 10.1016/j.plaphy.2013.08.011. PubMed DOI

Abdul-Halim A.M.-A., Shivanand P., Krishnamoorthy S., Taha H. A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer. J. Appl. Biol. Biotechnol. 2023;11:5. doi: 10.7324/JABB.2023.11504. DOI

Jaroszuk-Ściseł J., Tyśkiewicz R., Nowak A., Ozimek E., Majewska M., Hanaka A., Tyśkiewicz K., Pawlik A., Janusz G. Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia. Int. J. Mol. Sci. 2019;20:4923. doi: 10.3390/ijms20194923. PubMed DOI PMC

Tyśkiewicz R., Nowak A., Ozimek E., Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022;23:2329. doi: 10.3390/ijms23042329. PubMed DOI PMC

Vinale F., Nigro M., Sivasithamparam K., Flematti G., Ghisalberti E.L., Ruocco M., Varlese R., Marra R., Lanzuise S., Eid A., et al. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 2013;347:123–129. doi: 10.1111/1574-6968.12231. PubMed DOI

Yedida I., Srivastava A., Kapulnik Y., Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 2001;235:235–242. doi: 10.1023/A:1011990013955. DOI

Kahil A.A., Hassan F.A.S., Ali E.F. Influence of bio-fertilizers on growth, yield and anthocyanin content of Hibiscus sabdariffa L. plant under Taif region conditions. Ann. Res. Rev. Biol. 2017;17:1–15. doi: 10.9734/ARRB/2017/36099. DOI

Hassan F., Ali E.F., Mahfouz S.A. Comparison between different fertilization sources, irrigation frequency and their combinations on the growth and yield of the coriander plant. Aust. J. Appl. Basic Sci. 2012;6:600–615.

Tsotetsi T., Nephali L., Malebe M., Tugizimana F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? Plants. 2022;11:2482. doi: 10.3390/plants11192482. PubMed DOI PMC

Danish M., Shahid M., Zeyad M.T., Bukhari N.A., Alkhataf F., Hatamleh A.A., Ali S. Bacillus mojavensis, a Metal-Tolerant Plant Growth-Promoting Bacterium, Improves Growth, Photosynthetic Attributes, Gas Exchange Parameters, and Alkalo-Polyphenol Contents in Silver Nanoparticle (Ag-NP)-Treated Withania somnifera L. (Ashwagandha) ACS Omega. 2022;7:13878–13893. doi: 10.1021/acsomega.2c00262. PubMed DOI PMC

Emmanuel O.C., Babalola O.O. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res. 2020;239:1265–1269. doi: 10.1016/j.micres.2020.126569. PubMed DOI

Keller-Pearson M., Liu Y., Peterson A., Pederson K., Willems L., Ané J.-M., Silva E.M. Inoculation with arbuscular mycorrhizal fungi has a more significant positive impact on the growth of open-pollinated heirloom varieties of carrots than on hybrid cultivars under organic management conditions. Agric. Ecosyst. Environ. 2020;289:106712. doi: 10.1016/j.agee.2019.106712. DOI

Rasouli F., Amini T., Asadi M., Hassanpouraghdam M.B., Aazami M.A., Ercisli S., Skrovankova S., Mlcek J. Growth and Antioxidant Responses of Lettuce (Lactuca sativa L.) to Arbuscular Mycorrhiza Inoculation and Seaweed Extract Foliar Application. Agronomy. 2022;12:401. doi: 10.3390/agronomy12020401. DOI

Boomsma C.R., Vyn T.J. Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res. 2008;108:14–31. doi: 10.1016/j.fcr.2008.03.002. DOI

Cheng S., Zou Y.-N., Kuča K., Hashem A., Fathi E., Allah A., Wu Q.-S. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front. Microbiol. 2021;12:809473. doi: 10.3389/fmicb.2021.809473. PubMed DOI PMC

Santander C., Sanhueza M., Olave J., Borie F., Valentine A., Cornejo P. Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance. J. Soil Sci. Plant Nutr. 2019;19:321–331. doi: 10.1007/s42729-019-00032-z. DOI

Ma J., Janoušková M., Li Y., Yu X., Yan Y., Zou Z., He C. Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Funct. Plant Biol. 2015;42:1158–1167. doi: 10.1071/FP15106. PubMed DOI

Chen M., Arato M., Borghi L., Nouri E., Reinhardt D. Beneficial Services of Arbuscular Mycorrhizal Fungi—From Ecology to Application. Front. Plant Sci. 2018;9:1270. doi: 10.3389/fpls.2018.01270. PubMed DOI PMC

Gravel V., Martinez C., Antoun H., Tweddell R.J. Control of greenhouse tomato root rot [Pythium ultimum] in hydroponic systems, using plant-growth-promoting microorganisms. Can. J. Plant Pathol. 2006;28:475–483. doi: 10.1080/07060660609507322. DOI

Cerozi B.S., Fitzsimmons K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci. Hortic. 2016;211:277–282. doi: 10.1016/j.scienta.2016.09.005. DOI

Sheridan C., Depuydt P., Ro M.D., Petit C., Gysegem E.V., Delaere, Petal R., Pascale S.D., Ventorino V., Meyer T.D., et al. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics. Microb. Ecol. 2017;73:378–393. doi: 10.1007/s00248-016-0855-0. PubMed DOI

Dhawi F. The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming. Metabolites. 2023;13:247. doi: 10.3390/metabo13020247. PubMed DOI PMC

Mourouzidou S., Ntinas G.K., Tsaballa A., Monokrousos N. Introducing the Power of Plant Growth Promoting Microorganisms in Soilless Systems: A Promising Alternative for Sustainable Agriculture. Sustainability. 2023;15:5959. doi: 10.3390/su15075959. DOI

Goddek S., Vermeulen T. Comparison of Lactuca sativa growth performance in conventional and RAS-based hydroponic systems. Aquac. Int. 2018;26:1377–1386. doi: 10.1007/s10499-018-0293-8. PubMed DOI PMC

Gillespie D.P., Kubota C., Miller S.A. Effects of Low pH of Hydroponic Nutrient Solution on Plant Growth, Nutrient Uptake, and Root Rot Disease Incidence of Basil (Ocimum basilicum L.) HortScience. 2020;55:1251–1258. doi: 10.21273/HORTSCI14986-20. DOI

Goddek S., Keesman K.J. The necessity of desalination technology for designing and sizing multi-loop. Desalination. 2018;428:76–85. doi: 10.1016/j.desal.2017.11.024. DOI

Andrzejak R., Janowska B. Trichoderma spp. Improves Flowering, Quality, and Nutritional Status of Ornamental Plants. Int. J. Mol. Sci. 2022;23:15662. doi: 10.3390/ijms232415662. PubMed DOI PMC

Lennard W., Goddek S. Aqaponics: The Basics. In: Goddek S., Joyce A., Kotzen B., Burnell G.M., editors. Aquaponics Food Production Systems—Combined Aquaculture and Hydroponic Production Technologies for the Future. Springer International Publishing; New York, NY, USA: 2019. Chapter 5. DOI

Yang T., Kim H.-J. Characterizing Nutrient Composition and Concentration in Tomato-, Basil- and Lettuce-Based Aquaponic and Hydroponic Systems. Water. 2020;12:1259. doi: 10.3390/w12051259. DOI

Sanchez F.A., Vivian-Rogers V.R., Urakawa H. Tilapia recirculating aquaculture systems as a source of plant growth promoting bacteria. Aquac. Res. 2019;50:2054–2065. doi: 10.1111/are.14072. DOI

Pokluda R., Kobza F. Skleníky, Fóliovníky, Využití a Pěstební Technologie. 1st ed. Profi Press s.r.o.; Praha, Czech Republic: 2011.

Rakocy J.E., Masser M.P., Losordo T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. SRAC Publ. 2006;454

Cerozi B.S., Fitzimmons K. Phosphorus dynamics modeling and mass balance in an aquaponics system. Agric. Syst. 2017;153:94–100. doi: 10.1016/j.agsy.2017.01.020. DOI

Saravanakumar K., Arasu V.S., Kathiresan K. Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat. Bot. 2013;104:101–105. doi: 10.1016/j.aquabot.2012.09.001. DOI

Lopez-Baltazar J., Parent L.E., Tremblay N., Gosselin A. Sulfate accumulation and calcium balance in hydroponic tomato culture. J. Plant Nutr. 2007;25:1585–1597. doi: 10.1081/PLN-120005409. DOI

Loyless J.C., Malone R.F. A Sodium Bicarbonate Dosing Methodology for pH Management in Freshwater-Recirculating Aquaculture Systems. Progress. Fish-Cult. 1997;59:198–205. doi: 10.1577/1548-8640(1997)059<0198:ASBDMF>2.3.CO;2. DOI

Uddin A.F., Ahmad H., Hassan R., Mahbuba S., Roni M.Z. Effects of Trichoderma spp. on growth and yield characters of Bari tomato-14. Int. J. Bus. Soc. Sci. Res. 2016;4:117–122.

Vukelić I.D., Prokić L.T., Racić G.M., Pešić M.B., Bojović M.M., Sierka E.M., Kalaji H.M., Panković D. Effects of Trichoderma harzianum on Photosynthetic Characteristics and Fruit Quality of Tomato Plants. Int. J. Mol. Sci. 2021;22:6961. doi: 10.3390/ijms22136961. PubMed DOI PMC

Jamil A. Antifungal and plant growth promoting activity of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici colonizing tomato. J. Plant Prot. Res. 2021;61:243–253. doi: 10.24425/jppr.2021.137950. DOI

Chen D., Hou Q., Jia L., Sun K. Combined Use of Two Trichoderma Strains to Promote Growth of Pakchoi (Brassica chinensis L.) Agronomy. 2021;11:726. doi: 10.3390/agronomy11040726. DOI

Prajakta B.M., Suvarna P.P., Raghvendra S.P., Alok R.R. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Appl. Sci. 2019;1:1143. doi: 10.1007/s42452-019-1149-1. DOI

Kasozi N., Kaiser H., Wilhelmi B. Effect of Bacillus spp. on Lettuce Growth and Root Associated Bacterial Community in a Small-Scale Aquaponics System. Agronomy. 2021;11:947. doi: 10.3390/agronomy11050947. DOI

Pandey C., Bajpai V.K., Negi Y.K., Rather I.A., Maheshwari D.K. Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J. Biol. Sci. 2018;25:1066–1071. doi: 10.1016/j.sjbs.2018.03.003. PubMed DOI PMC

Singh B.N., Dwivedi P., Sarma B.K., Singh G.S., Singh H.B. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech. 2019;9:109. doi: 10.1007/s13205-019-1638-3. PubMed DOI PMC

Day J.A., Diener C., Otwell A.E., Tams K.E., Bebout B., Detweiler A.M., Lee M.D., Scott M.T., Ta W., Ha M., et al. Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics. PLoS ONE. 2021;16:e0247534. doi: 10.1371/journal.pone.0247534. PubMed DOI PMC

Brentrup F., Palliere C. Nitrogen Use Efficiency as an Agro-Environmental Indicator. OECD Booklet Interior Template. [(accessed on 28 August 2023)]. Available online: https://www.oecd.org/greengrowth/sustainable-agriculture/44810433.pdf.

Marsic N.K., Osvald J. Effects of different nitrogen levels on lettuce growth and nitrate accumulation in iceberg lettuce (Lactuca sativa var. capitata L.) grown hydroponically under greenhouse conditions. Gartenbauwissenschaft. 2002;67:128–134.

Phillips J.M., Hayman D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970;55:158–161. doi: 10.1016/S0007-1536(70)80110-3. DOI

Posada L.F., Alvarez J.C., Hu C.-H., de-Bashan L.E., Bashan Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J. Microbiol. Methods. 2016;128:125–129. doi: 10.1016/j.mimet.2016.05.029. PubMed DOI

Zbíral J. Analýza Rostlinného Materiálu, Jednotné Pracovní Postupy. 2nd ed. Ústřední Kontrolní a Zkušební Ústav Zemědělský; Brno, Czechia: 2002.

Holm G. Chlorophyll Mutations in Barley. Acta Agric. Scand. 1954;4:457–471. doi: 10.1080/00015125409439955. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace