Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36101403
PubMed Central
PMC9312129
DOI
10.3390/biology11071022
PII: biology11071022
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural practices, bioinformatics, biotechnological tools, breeding, multi-omics, rice, salinity stress, transcription factors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rice (Oryza sativa L.) plants are simultaneously encountered by environmental stressors, most importantly salinity stress. Salinity is the major hurdle that can negatively impact growth and crop yield. Understanding the salt stress and its associated complex trait mechanisms for enhancing salt tolerance in rice plants would ensure future food security. The main aim of this review is to provide insights and impacts of molecular-physiological responses, biochemical alterations, and plant hormonal signal transduction pathways in rice under saline stress. Furthermore, the review highlights the emerging breakthrough in multi-omics and computational biology in identifying the saline stress-responsive candidate genes and transcription factors (TFs). In addition, the review also summarizes the biotechnological tools, genetic engineering, breeding, and agricultural practicing factors that can be implemented to realize the bottlenecks and opportunities to enhance salt tolerance and develop salinity tolerant rice varieties. Future studies pinpointed the augmentation of powerful tools to dissect the salinity stress-related novel players, reveal in-depth mechanisms and ways to incorporate the available literature, and recent advancements to throw more light on salinity responsive transduction pathways in plants. Particularly, this review unravels the whole picture of salinity stress tolerance in rice by expanding knowledge that focuses on molecular aspects.
College of Horticulture and Gardening Yangtze University Jingzhou 434025 China
Department of Biotechnology Science Campus Alagappa University Karaikudi 630 003 India
Department of Botany Science Campus Alagappa University Karaikudi 630 003 India
Department of Crop Science College of Sanghuh Life Science Konkuk University Seoul 05029 Korea
Department of GreenBio Science Gyeongsang National University Jinju 52725 Korea
Department of Horticultural Science Gyeongsang National University Jinju 52725 Korea
Department of Life Sciences National University of Kaohsiung Kaohsiung 811 Taiwan
Subtropical Horticulture Research Institute Jeju National University Jeju 63243 Korea
Zobrazit více v PubMed
Muthuramalingam P., Krishnan S.R., Pothiraj R., Ramesh M. Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: An in silico approach. Front. Plant Sci. 2017;8:759. doi: 10.3389/fpls.2017.00759. PubMed DOI PMC
Abhinandan K., Skori L., Stanic M., Hickerson N.M., Jamshed M., Samuel M.A. Abiotic stress signaling in wheat—An inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front. Plant Sci. 2018;9:734. doi: 10.3389/fpls.2018.00734. PubMed DOI PMC
Tripathi D.K., Singh S., Gaur S., Singh S., Yadav V., Liu S., Singh V.P., Sharma S., Srivastava P., Prasad S.M., et al. Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance. Front. Environ. Sci. 2018;5:86. doi: 10.3389/fenvs.2017.00086. DOI
Yeo A.R., Lee K.-S., Izard P., Boursier P.J., Flowers T.J. Short and long-term effects of salinity on leaf growth in rice (Oryza sativa L.) J. Exp. Bot. 1991;42:881–889. doi: 10.1093/jxb/42.7.881. DOI
Yang Y., Guo Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018;60:796–804. doi: 10.1111/jipb.12689. PubMed DOI
Kumar V., Shriram V., Kishor P.B.K., Jawali N., Shitole M.G. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol. Rep. 2010;4:37–48. doi: 10.1007/s11816-009-0118-3. DOI
Zhu J.K. Plant salt tolerance. Trends Plant Sci. 2001;6:66–71. doi: 10.1016/S1360-1385(00)01838-0. PubMed DOI
Elert E. Rice by the numbers: A good grain. Nature. 2014;514:S50–S51. doi: 10.1038/514S50a. PubMed DOI
Muthayya T., Sugimoto J.D., Montgomery S., Maberly G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014;1324:7–14. doi: 10.1111/nyas.12540. PubMed DOI
Rose G., Osborne T., Greatrex H., Wheeler T. Impact of progressive global warming on the global scale yield of maize and soybean. Clim. Change. 2016;134:417–428. doi: 10.1007/s10584-016-1601-9. DOI
Meena K.K., Sorty A.M., Bitla U.M., Choudhary K., Gupta P., Pareek A., Singh D.P., Prabha R., Sahu P.K., Gupta V.K., et al. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017;8:172. doi: 10.3389/fpls.2017.00172. PubMed DOI PMC
Lafitte H.R., Ismail A., Bennett J. Abiotic stress tolerance in rice for Asia: Progress and the future. New Directions for a Diverse Planet; Proceedings of the 4th International Crop Science Congress; Brisbane, Australia. 26 September–1 October 2004; Erina, Australia: The Regional Institute Ltd.; [(accessed on 20 April 2022)]. Available online: http://www.cropscience.org.au/icsc.
Lee K.S., Choi W.Y., Ko J.C., Kim T.S., Gregorio G.B. Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta. 2003;216:1043–1046. doi: 10.1007/s00425-002-0958-3. PubMed DOI
Nouri M.Z., Moumeni A., Komatsu S. Abiotic stresses: Insight into gene regulation and protein expression in photosynthetic pathways of plants. Int. J. Mol. Sci. 2015;16:20392–20416. doi: 10.3390/ijms160920392. PubMed DOI PMC
International Rice Genome Sequencing Project The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI
Kosova K., Vítámvás P., Urban M.O., Klíma M., Roy A., Prášil I.T. Biological networks underlying abiotic stress tolerance in temperate crops—A proteomic perspective. Int. J. Mol. Sci. 2015;16:20913–20942. doi: 10.3390/ijms160920913. PubMed DOI PMC
Muthuramalingam P., Jeyasri R., Bharathi R.K.A.S., Suba V., Pandian S.T.K., Ramesh M. Global integrated omics expression analyses of abiotic stress signaling HSF transcription factor genes in Oryza sativa L.: An in silico approach. Genomics. 2020;112:908–918. doi: 10.1016/j.ygeno.2019.06.006. PubMed DOI
Muthuramalingam P., Jeyasri R., Kalaiyarasi D., Pandian S., Krishnan S.R., Satish L., Pandian S.K., Ramesh M. Emerging advances in computational omics tools for systems analysis of gramineae family grass species and their abiotic stress-responsive functions. OMICS-Based Approach Plant Biotechnol. 2019;185:185.
Montilla-Bascon G., Rubialesa D., Altabellabc T., Prats E. Free polyamine and polyamine regulation during pre-penetration and penetration resistance events in oat against crown rust (Puccinia coronata f. sp. avenae) Plant Pathol. 2016;65:392–401. doi: 10.1111/ppa.12423. DOI
Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017;7:2049. doi: 10.3389/fpls.2016.02049. PubMed DOI PMC
Kerchev P., van der Meer T., Sujeeth N., Verlee A., Stevens C.V., Van Breusegem F., Gechev T. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 2020;40:107503. doi: 10.1016/j.biotechadv.2019.107503. PubMed DOI
Tisarum R., Theerawitaya C., Samphumphuang T., Polispitak K., Thongpoem P., Singh H.P., Cha-Um S. Alleviation of salt stress in upland rice (Oryza sativa L. s indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front. Plant Sci. 2020;11:348. doi: 10.3389/fpls.2020.00348. PubMed DOI PMC
Qin H., Li Y., Huang R. Advances and Challenges in the Breeding of Salt-Tolerant Rice. Int. J. Mol. Sci. 2020;21:8385. doi: 10.3390/ijms21218385. PubMed DOI PMC
Sarangi S., Ghosh J., Bora A., Das S., Mandal A.B. Agrobacterium-mediated genetic transformation of indica rice varieties involving Am-SOD gene. Indian J. Biotechnol. 2011;10:9–18.
Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015;22:123–131. doi: 10.1016/j.sjbs.2014.12.001. PubMed DOI PMC
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–250. doi: 10.1046/j.0016-8025.2001.00808.x. PubMed DOI
Bano A., Fatima M. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils. 2009;45:405–413. doi: 10.1007/s00374-008-0344-9. DOI
Isayenkov S.V., Maathuis F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019;10:80. doi: 10.3389/fpls.2019.00080. PubMed DOI PMC
Munns R., Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI
Netondo G.W., Onyango J.C., Beck E. Sorghum salinity: II Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 2004;44:806–811. doi: 10.2135/cropsci2004.8060. DOI
Foyer C.H., Noctor G. Oxidant and antioxidant signalling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005;28:1056–1071. doi: 10.1111/j.1365-3040.2005.01327.x. DOI
Logan B.A. Reactive oxygen species and photosynthesis. In: Smirnoff N., editor. Antioxidants and Reactive Oxygen Species in Plants. Blackwell; Oxford, UK: 2005. pp. 250–267.
Kumar K., Kumar M., Kim S.R., Ryu H., Cho Y.G. Insights into genomics of salt stress response in rice. Rice. 2013;6:27. doi: 10.1186/1939-8433-6-27. PubMed DOI PMC
Muthuramalingam P., Krishnan S.R., Verma D.K. Rice Science: Biotechnological and Molecular Advancements. Apple Academic Press; CRC Press, Taylor and Francis Group; New York, NY, USA: 2018. Technological Development for Abiotic Stress in Rice; pp. 97–120.
Roy S.J., Negrão S., Tester M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014;26:115–124. doi: 10.1016/j.copbio.2013.12.004. PubMed DOI
Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A., Diaz-Vivancos P., Sanchez-Blanco M.J., Hernandez J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy. 2017;7:18. doi: 10.3390/agronomy7010018. DOI
Grover A., Pental D. Breeding objectives and requirements for producing transgenics for major field crops of India. Curr. Sci. 2003;84:310–320.
Joseph B., Jini D., Sujatha S. Biological and physiological perspectives of specificity in abiotic salt stress response from various rice plants. Asian J. Agric. Sci. 2010;2:99–105.
Negrao S., Schmöckel S.M., Tester M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017;119:mcw191. doi: 10.1093/aob/mcw191. PubMed DOI PMC
Kronzucker H.J., Britto D.T. Sodium transport in plants: A critical review. New Phytol. 2011;189:54–81. doi: 10.1111/j.1469-8137.2010.03540.x. PubMed DOI
Shi Y., Wang Y., Flowers T.J., Gong H. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J. Plant Physiol. 2013;170:847–853. doi: 10.1016/j.jplph.2013.01.018. PubMed DOI
Demidchik V., Shabala S., Isayenkov S., Cuin T.A., Pottosin I. Calcium transport across plant membranes: Mechanisms and functions. New Phytol. 2018;220:49–69. doi: 10.1111/nph.15266. PubMed DOI
Essah P.A., Davenport R., Tester M. Sodium influx and accumulation in Arabidopsis. Plant Physiol. 2008;133:307–318. doi: 10.1104/pp.103.022178. PubMed DOI PMC
Ranathunge K., Schreiber L. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J. Exp. Bot. 2011;62:1961–1974. doi: 10.1093/jxb/erq389. PubMed DOI PMC
Horie T., Motoda J., Kubo M., Yang H., Yoda K., Horie R., Chan W.Y., Leung H.Y., Hattori K., Konomi M., et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J. 2005;44:928–938. PubMed
Chen S., Diekmann H., Janz D., Polle A. Quantitative X-ray elemental imaging in plant materials at the subcellular level with a transmission electron microscope: Applications and limitations. Materials. 2014;7:3160–3175. doi: 10.3390/ma7043160. PubMed DOI PMC
Naeem M.S., Jin Z.L., Wan G.L., Liu D., Liu H.B., Yoneyama K., Zhou W.J. 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.) Plant Soil. 2010;332:405–415. doi: 10.1007/s11104-010-0306-5. DOI
Islam F., Wang J., Farooq M.A., Yang C., Jan M., Mwamba T.M., Hannan F., Xu L., Zhou W. Advances in Rice Research for Abiotic Stress Tolerance. Woodhead Publishing; Elseveir, UK: 2019. Rice Responses and Tolerance to Salt Stress: Deciphering the Physiological and Molecular Mechanisms of Salinity Adaptation; pp. 791–819.
Chakraborty K., Bhaduri D., Meena H.N., Kalariya K. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 2016;103:143–153. doi: 10.1016/j.plaphy.2016.02.039. PubMed DOI
Reddy I.N.B.L., Kim S.M., Kim B.K., Yoon I.S., Kwon T.R. Identification of rice accessions associated with K+/Na+ ratio and salt tolerance based on physiological and molecular responses. Rice Sci. 2017;24:360–364. doi: 10.1016/j.rsci.2017.10.002. DOI
Rahman A., Nahar K., Al Mahmud J., Hasanuzzaman M., Hossain M.S., Fujita M. Salt stress tolerance in rice: Emerging role of exogenous phytoprotectants. Adv. Int. Rice Res. 2017;9:139–174.
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Ali I., Jan M., Wakeel A., Azizullah A., Liu B., Islam F., Ali A., Daud M.K., Liu Y., Gan Y. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicol. Environ. Saf. 2017;144:62–71. doi: 10.1016/j.ecoenv.2017.06.015. PubMed DOI
Xu L., Islam F., Ali B., Pei Z., Li J., Ghani M.A., Zhou W. Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.) 3 Biotech. 2017;7:273. doi: 10.1007/s13205-017-0904-5. PubMed DOI PMC
Farooq M.A., Islam F., Yang C., Nawaz A., Athar H.U.R., Gill R.A., Ali B., Song W., Zhou W. Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots. Plant Growth Regul. 2018;84:135–148. doi: 10.1007/s10725-017-0327-7. DOI
Xu L., Zhang W., Ali B., Islam F., Zhu J., Zhou W. Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.) Pestic. Biochem. Physiol. 2015;125:53–61. doi: 10.1016/j.pestbp.2015.06.002. PubMed DOI
Wang J., Lv M., Islam F., Gill R.A., Yang C., Ali B., Yan G., Zhou W. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity. Ecotoxicol. Environ. Saf. 2016;133:146156. doi: 10.1016/j.ecoenv.2016.07.002. PubMed DOI
Farooq M.A., Gill R.A., Ali B., Wang J., Islam F., Ali S., Zhou W. Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicology. 2016;25:350366. doi: 10.1007/s10646-015-1594-6. PubMed DOI
Farooq M.A., Gill R.A., Islam F., Ali B., Liu H., Xu J., He S., Zhou W. Methyl Jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front. Plant Sci. 2016;7:468. doi: 10.3389/fpls.2016.00468. PubMed DOI PMC
Mishra P., Bhoomika K., Dubey R.S. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma. 2013;250:3–19. doi: 10.1007/s00709-011-0365-3. PubMed DOI
Abdallah M.S., Abdelgawad Z.A., El-Bassiouny H.M.S. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South Afr. J. Bot. 2016;103:275–282. doi: 10.1016/j.sajb.2015.09.019. DOI
Vighi I.L., Benitez L.C., Amaral M.N., Moraes G.P., Auler P.A., Rodrigues G.S., Deuner S., Maia L.C., Braga E.J.B. Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biol. Plant. 2017;61:540–550. doi: 10.1007/s10535-017-0727-6. DOI
Mittova V., Tal M., Volokita M., Guy M. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol. Plant. 2002;115:393–400. doi: 10.1034/j.1399-3054.2002.1150309.x. PubMed DOI
Chawla S., Jain S., Jain V. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.) J. Plant Biochem. Biotechnol. 2013;22:27–34. doi: 10.1007/s13562-012-0107-4. DOI
Xu S., Zhu S., Jiang Y., Wang N., Wang R., Shen W., Yang J. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil. 2013;370:47–57. doi: 10.1007/s11104-013-1614-3. DOI
Sharma R., De Vleesschauwer D., Sharma M.K., Ronald P.C. Recent advances in dissecting stress-regulatory crosstalk in rice. Mol. Plant. 2013;6:250–260. doi: 10.1093/mp/sss147. PubMed DOI
Roychoudhury A., Basu S., Sengupta D. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J. Plant Physiol. 2011;168:317–328. doi: 10.1016/j.jplph.2010.07.009. PubMed DOI
Turan S., Tripathy B.C. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma. 2013;250:209–222. doi: 10.1007/s00709-012-0395-5. PubMed DOI
Yamane K., Mitsuya S., Taniguchi M., Miyake H. Transcription profiles of genes encoding catalase and ascorbate peroxidase in the rice leaf tissues under salinity. Plant Prod. Sci. 2010;13:164–168. doi: 10.1626/pps.13.164. DOI
Islam F., Ali S., Farooq M.A., Wang J., Gill R.A., Zhu J., Ali B., Zhou W. Butachlor-Induced Alterations in Ultrastructure, Antioxidant, and Stress-Responsive Gene Regulations in Rice Cultivars. CLEAN–Soil Air, Water. 2017;45:1500851. doi: 10.1002/clen.201500851. DOI
Bonifacio A., Carvalho F.E., Martins M.O., Neto M.C.L., Cunha J.R., Ribeiro C.W., Margis-Pinheiro M., Silveira J.A. Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase. J. Plant Physiol. 2016;201:17–27. doi: 10.1016/j.jplph.2016.06.015. PubMed DOI
Hong C.Y., Kao C.H. NaCl-induced expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings is not associated with osmotic component. Plant Sig. Behav. 2008;3:199–201. doi: 10.4161/psb.3.3.5541. PubMed DOI PMC
Nath M., Yadav S., Sahoo R.K., Passricha N., Tuteja R., Tuteja N. PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. J. Plant Physiol. 2016;191:1–11. doi: 10.1016/j.jplph.2015.11.008. PubMed DOI
Demiral T., Türkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 2005;53:247–257. doi: 10.1016/j.envexpbot.2004.03.017. DOI
Kordrostami M., Rabiei B., Kumleh H.H. Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. Environ. Sci. Pollut. Res. 2017;24:7184–7196. doi: 10.1007/s11356-017-8411-0. PubMed DOI
Talaat N.B. Effective microorganisms enhance the scavenging capacity of the ascorbate–glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiol. Biochem. 2014;80:136–143. doi: 10.1016/j.plaphy.2014.03.035. PubMed DOI
Jiang Y., Deyholos M.K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006;6:25. doi: 10.1186/1471-2229-6-25. PubMed DOI PMC
Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796. doi: 10.1038/35048692. PubMed DOI
Seki M., Satou M., Sakurai T., Akiyama K., Iida K., Ishida J., Nakajima M., Enju A., Narusaka M., Fujita M., et al. RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J. Exp. Bot. 2004;55:213–223. doi: 10.1093/jxb/erh007. PubMed DOI
Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y., Yoshiwara K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003;133:1755–1767. doi: 10.1104/pp.103.025742. PubMed DOI PMC
Dai Yin C.H.A.O., Luo Y.H., Min S.H.I., Luo D., Lin H.X. Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res. 2005;15:796–810. PubMed
Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., Shimada Y., Yoshida S., Shinozaki K., Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004;38:982–993. doi: 10.1111/j.1365-313X.2004.02100.x. PubMed DOI
Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006;47:141–153. doi: 10.1093/pcp/pci230. PubMed DOI
Muthuramalingam P., Krishnan S.R., Saravanan K., Mareeswaran N., Kumar R., Ramesh M. Genome-wide identification of major transcription factor superfamilies in rice identifies key candidates involved in abiotic stress dynamism. J. Plant Biochem. Biotechnol. 2018;27:300–317. doi: 10.1007/s13562-018-0440-3. DOI
Jin J., Zhang H., Kong L., Gao G., Luo J. PlantTFDB 3.0, a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42:D1182–D1187. doi: 10.1093/nar/gkt1016. PubMed DOI PMC
Suttipanta N., Pattanaik S., Kulshrestha M., Patra B., Singh S.K., Yuan L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 2011;157:2081–2093. doi: 10.1104/pp.111.181834. PubMed DOI PMC
Bita C.E., Gerats T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013;4:273. doi: 10.3389/fpls.2013.00273. PubMed DOI PMC
Mukhopadhyay A., Vij S., Tyagi A.K. Overexpression of a zinc finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 2004;101:6309–6314. doi: 10.1073/pnas.0401572101. PubMed DOI PMC
Kiribuchi K., Jikumaru Y., Kaku H., Minami E., Hasegawa M., Kodama O., Seto H., Okada K., Nojiri H., Yamane H. Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci. Biotechnol. Biochem. 2005;69:1042–1044. doi: 10.1271/bbb.69.1042. PubMed DOI
Gutha L.R., Reddy A.R. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol. Biol. 2008;68:533–555. doi: 10.1007/s11103-008-9391-8. PubMed DOI
Ren X., Chen Z., Liu Y., Zhang H., Zhang M., Liu Q., Hong X., Zhu J.K., Gong Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 2010;63:417–429. doi: 10.1111/j.1365-313X.2010.04248.x. PubMed DOI PMC
Peck S., Mittler R. Plant signaling in biotic and abiotic stress. J. Exp. Bot. 2020;71:1649–1651. doi: 10.1093/jxb/eraa051. PubMed DOI
Lymperopoulos P., Msanne J., Rabara R. Phytochrome and phytohormones: Working in tandem for plant growth and development. Front. Plant Sci. 2018;27:1037. doi: 10.3389/fpls.2018.01037. PubMed DOI PMC
Ali M., Baek K.H. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int. J. Mol. Sci. 2020;21:621. doi: 10.3390/ijms21020621. PubMed DOI PMC
Jaillais Y., Chory J. Unraveling the paradoxes of plant hormone signaling integration. Nat. Struct. Mol. Biol. 2010;17:642–645. doi: 10.1038/nsmb0610-642. PubMed DOI PMC
Teale W., Paponov I., Tietz O., Palme K. Endocrinology. Humana Press; New York, NY, USA: 2005. Phytohormones and signal transduction pathways in plants; pp. 137–147.
Athar H.R., Ashraf M. Salinity and Water Stress. Springer; Dordrecht, The Netherlands: 2009. Strategies for crop improvement against salinity and drought stress: An overview; pp. 1–16.
Kaya C., Tuna A.L., Yokaş I. Salinity and Water Stress. Springer; Dordrecht, The Netherlands: 2009. The role of plant hormones in plants under salinity stress; pp. 45–50.
Pedranzani H., Racagni G., Alemano S., Miersch O., Ramírez I., Peña-Cortés H., Taleisnik E., Machado-Domenech E., Abdala G. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul. 2003;41:149–158. doi: 10.1023/A:1027311319940. DOI
Chen K., Li G.J., Bressan R.A., Song C.P., Zhu J.K., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020;62:25–54. doi: 10.1111/jipb.12899. PubMed DOI
Niu M., Xie J., Chen C., Cao H., Sun J., Kong Q., Shabala S., Shabala L., Huang Y., Bie Z. An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. J. Exp. Bot. 2018;69:4945–4960. doi: 10.1093/jxb/ery251. PubMed DOI PMC
Golldack D., Li C., Mohan H., Probst N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014;5:151. doi: 10.3389/fpls.2014.00151. PubMed DOI PMC
Yu Z., Duan X., Luo L., Dai S., Ding Z., Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020;25:1117–1130. doi: 10.1016/j.tplants.2020.06.008. PubMed DOI
He T., Cramer G.R. Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil. 1996;179:25–33. doi: 10.1007/BF00011639. DOI
Montero E., Cabot C., Poschenrieder C.H., Barcelo J. Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ. 1998;21:54–62. doi: 10.1046/j.1365-3040.1998.00249.x. DOI
Cramer G.R., Quarrie S.A. Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct. Plant Biol. 2002;29:111–115. doi: 10.1071/PP01131. PubMed DOI
Yoshida T., Mogami J., Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 2014;21:133–139. doi: 10.1016/j.pbi.2014.07.009. PubMed DOI
Ullah A., Sun H., Yang X., Zhang X. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnol. J. 2017;15:271–284. doi: 10.1111/pbi.12688. PubMed DOI PMC
Dong T., Park Y., Hwang I. Abscisic acid: Biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem. 2015;58:29–48. PubMed
Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA. 2006;103:1988–1993. doi: 10.1073/pnas.0505667103. PubMed DOI PMC
Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA. 2006;103:18822–18827. doi: 10.1073/pnas.0605639103. PubMed DOI PMC
Maruyama K., Urano K., Yoshiwara K., Morishita Y., Sakurai N., Suzuki H., Kojima M., Sakakibara H., Shibata D., Saito K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol. 2014;164:1759–1771. doi: 10.1104/pp.113.231720. PubMed DOI PMC
Agarwal P.K., Jha B. Transcription factors in plants and ABA-dependent and independent abiotic stress signalling. Biol. Plant. 2010;54:201–212. doi: 10.1007/s10535-010-0038-7. DOI
Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E. ABA perception and signalling. Trends Plant Sci. 2010;1:395–401. doi: 10.1016/j.tplants.2010.04.006. PubMed DOI
Aroca R., Ruiz-Lozano J.M., Zamarreño Á.M., Paz J.A., García-Mina J.M., Pozo M.J., López-Ráez J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013;170:47–55. doi: 10.1016/j.jplph.2012.08.020. PubMed DOI
Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H.J. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001;13:889–905. doi: 10.1105/tpc.13.4.889. PubMed DOI PMC
Roychoudhury A., Paul S., Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 2013;32:985–1006. doi: 10.1007/s00299-013-1414-5. PubMed DOI
Singh R.K., Redoña E.D., Refuerzo L. Varietal improvement for abiotic stress tolerance in crop plants: Special reference to salinity in rice. In: Pareek A., Sopory S.K., Bohnert H.J., Govindjee, editors. Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation. Springer; New York, NY, USA: 2010. pp. 387–415.
Fita A., Rodríguez-Burruezo A., Boscaiu M., Prohens J., Vicente O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015;6:978. doi: 10.3389/fpls.2015.00978. PubMed DOI PMC
Li Z.-K., Xu J.-L. Breeding for drought and salt tolerant rice (Oryza sativa L.): Progress and perspective. In: Jenks M.A., Hasegawa P.M., Jain S.M., editors. Advances in Molecular Breeding toward Drought and Salt Tolerance Crops. Springer; Dordrecht, The Netherlands: 2007. pp. 531–564.
Lee I.S., Kim D.S., Lee S.J., Song H.S., Lim Y.P., Lee Y.I. Selection and characterizations of radiation-induced salinity tolerant lines in rice. Breed. Sci. 2003;53:313–318. doi: 10.1270/jsbbs.53.313. DOI
Ismail A., Heuer S., Thomson M., Wissuwa M. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 2007;65:547–570. doi: 10.1007/s11103-007-9215-2. PubMed DOI
Breseghello F., Coelho A.S.G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.) J. Agric. Food Chem. 2013;61:8277–8286. doi: 10.1021/jf305531j. PubMed DOI
Almeida D.M., Almadanim M.C., Lourenço T., Abreu I.A., Saibo N.J.M., Oliveira M.M. Screening for abiotic stress tolerance in rice: Salt, cold, and drought. In: Duque P., editor. Environmental Responses in Plants: Methods and Protocols. Springer; New York, NY, USA: 2016. pp. 155–182. PubMed
Mangrauthia S.K., Revathi P., Agarwal S., Singh A.K., Bhadana V. Improvement of Crops in the Era of Climatic Changes. Springer; Berlin/Heidelberg, Germany: 2014. Breeding and transgenic approaches for development of abiotic stress tolerance in rice; pp. 153–190.
Nachimuthu V.V., Sabariappan R., Muthurajan R., Kumar A. Abiotic Stress Management for Resilient Agriculture. Springer; Berlin/Heidelberg, Germany: 2017. Breeding rice varieties for abiotic stress tolerance: Challenges and opportunities; pp. 339–361.
Ganie S.A., Molla K.A., Henry R.J., Bhat K.V., Mondal T.K. Advances in understanding salt tolerance in rice. Theor. Appl. Genet. 2019;132:851–870. doi: 10.1007/s00122-019-03301-8. PubMed DOI
Swamy B.P.M., Kumar A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol. Adv. 2013;31:1308–1318. doi: 10.1016/j.biotechadv.2013.05.004. PubMed DOI
Shabir G., Aslam K., Khan A.R., Shahid M., Manzoor H., Noreen S., Khan M.A., Baber M., Sabar M., Shah S.M., et al. Rice molecular markers and genetic mapping: Current status and prospects. J. Integr. Agric. 2017;16:1879–1891. doi: 10.1016/S2095-3119(16)61591-5. DOI
Angeles-Shim R.B., Reyes V.P., del Valle M.M., Lapis R.S., Shim J., Sunohara H., Jena K.K., Ashikari M., Doi K. Marker-assisted introgression of quantitative resistance gene pi21 confers broad spectrum resistance to rice blast. Rice Sci. 2020;27:113–123. doi: 10.1016/j.rsci.2020.01.002. DOI
Reyes V.P., Angeles-Shim R.B., Mendioro M.S., Manuel M.C.C., Lapis R.S., Shim J., Sunohara H., Nishiuchi S., Kikuta M., Makihara D. Marker-assisted introgression and stacking of major QTLs controlling grain number (Gn1a) and number of primary branching (WFP) to NERICA cultivars. Plants. 2021;10:844. doi: 10.3390/plants10050844. PubMed DOI PMC
Samantara K., Reyes V.P., Agrawal N., Mohapatra S.R., Jena K.K. Advances and trends on the utilization of multi-parent advanced generation intercross (MAGIC) for crop improvement. Euphytica. 2021;217:189. doi: 10.1007/s10681-021-02925-6. DOI
Krishnamurthy S.L., Sharma P.C., Dewan D., Lokeshkumar B.M., Rathor S., Warraich A.S., Vinaykumar N.M., Leung H., Singh R.K. Genome wide association study of MAGIC population reveals a novel QTL for salinity and sodicity tolerance in rice. Physiol. Mol. Biol. Plants. 2022;28:819–835. doi: 10.1007/s12298-022-01174-8. PubMed DOI PMC
Samantara K., Bohra A., Mohapatra S.R., Prihatini R., Asibe F., Singh L., Reyes V.P., Tiwari A., Maurya A.K., Croser J.S., et al. Breeding More Crops in Less Time: A Perspective on Speed Breeding. Biology. 2022;11:275. doi: 10.3390/biology11020275. PubMed DOI PMC
Rana M.M., Takamatsu T., Baslam M., Kaneko K., Itoh K., Harada N., Sugiyama T., Ohnishi T., Kinoshita T., Takagi H. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int. J. Mol. Sci. 2019;20:2585. doi: 10.3390/ijms20102585. PubMed DOI PMC
Peng P., Gao Y.D., Li Z., Yu Y.W., Qin H., Guo Y., Huang R.F., Wang J. Proteomic analysis of a rice mutant sd58 possessing a novel d1 allele of heterotrimeric G protein alpha subunit (RGA1) in salt stress with a focus on ROS scavenging. Int. J. Mol. Sci. 2019;20:167. doi: 10.3390/ijms20010167. PubMed DOI PMC
Sun B.R., Fu C.Y., Fan Z.L., Chen Y., Chen W.F., Zhang J., Jiang L.Q., Lv S., Pan D.J., Li C. Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu. Rice. 2019;12:99. doi: 10.1186/s12284-019-0360-4. PubMed DOI PMC
Bonilla P., Dvorak J., Mackill D., Deal K., Gregorio G. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philip. Agric. Sci. 2002;85:68–76.
Thomson M.J., de Ocampo M., Egdane J., Rahman M.A., Sajise A.G., Adorada D.L., Tumimbang-Raiz E., Blumwald E., Seraj Z.I., Singh R.K., et al. Characterizing the saltol quantitative trait locus for salinity tolerance in Rice. Rice. 2010;3:148–160. doi: 10.1007/s12284-010-9053-8. DOI
Lin H.X., Zhu M.Z., Yano M., Gao J.P., Liang Z.W., Su W.A., Hu X.H., Ren Z.H., Chao D.Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 2004;108:253–260. doi: 10.1007/s00122-003-1421-y. PubMed DOI
Ren Z.H., Gao J.P., Li L.G., Cai X.L., Huang W., Chao D.Y., Zhu M.Z., Wang Z.Y., Luan S., Lin H.X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 2005;37:1141–1146. doi: 10.1038/ng1643. PubMed DOI
Lee S.Y., Ahn J.H., Cha Y.S., Yun D.W., Lee M.C., Ko J.C., Lee K.S., Eun M.Y. Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol. Cells. 2006;21:192–196. PubMed
Ammar M.H.M., Pandit A., Singh R.K., Sameena S., Chauhan M.S., Singh A.K., Sharma P.C., Gaikwad K., Sharma T.R., Mohapatra T., et al. Mapping of QTLs controlling Na+, K+ and Ci− ion concentrations in salt tolerant indica rice variety CSR27. J. Plant Biochem. Biotechnol. 2009;18:139–150. doi: 10.1007/BF03263312. DOI
Pandit A., Rai V., Bal S., Sinha S., Kumar V., Chauhan M.S., Gautam R.K., Singh R.B., Sharma P.C., Singh A.K., et al. Combining QTL mapping and transcriptome profiling of bulked rils for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.) Mol. Genet. Genom. 2010;284:121–136. doi: 10.1007/s00438-010-0551-6. PubMed DOI
Tian L., Tan L.B., Liu F.X., Cai H.W., Sun C.Q. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. J. Genet. Genom. 2011;38:593–601. doi: 10.1016/j.jgg.2011.11.005. PubMed DOI
Cheng L.R., Wang Y., Meng L.J., Hu X., Cui Y.R., Sun Y., Zhu L.H., Ali J., Xu J.L., Li Z.K. Identification of salt-tolerant QTLs with strong genetic background e_ect using two sets of reciprocal introgression lines in rice. Genome. 2012;55:45–55. doi: 10.1139/g11-075. PubMed DOI
Hossain H., Rahman M.A., Alam M.S., Singh R.K. Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J. Agron. Crop Sci. 2015;201:17–31. doi: 10.1111/jac.12086. DOI
Zheng H.L., Zhao H.W., Liu H.L., Wang J.G., Zou D.T. QTL analysis of Na+ and K+ concentrations in shoots and roots under NaCl stress based on linkage and association analysis in japonica rice. Euphytica. 2015;201:109–121. doi: 10.1007/s10681-014-1192-3. DOI
Dahanayaka B.A., Gimhani D., Kottearachchi N., Samarasighe W.L.G. QTL mapping for salinity tolerance using an elite rice (Oryza sativa) breeding population. SABRAO J. Breed. Genet. 2017;49:123–134.
Wang S.S., Cao M., Ma X., Chen W.K., Zhao J., Sun C.Q., Tan L.B., Liu F.X. Integrated RNA sequencing and QTL mapping to identify candidate genes from Oryza rufipogon associated with salt tolerance at the seedling stage. Front. Plant Sci. 2017;8:1427. doi: 10.3389/fpls.2017.01427. PubMed DOI PMC
He Y., Yang B., He Y., Zhan C., Cheng Y., Zhang J., Zhang H., Cheng J., Wang Z. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J. 2019;97:1089–1104. doi: 10.1111/tpj.14181. PubMed DOI PMC
Wu F.L., Yang J., Yu D.Q., Xu P. Identification and validation a major QTL from “Sea Rice 86” seedlings conferred salt tolerance. Agronomy. 2020;10:410. doi: 10.3390/agronomy10030410. DOI
Kumar V., Singh A., Mithra S.V.A., Krishnamurthy S.L., Parida S.K., Jain S., Tiwari K.K., Kumar P., Rao A.R., Sharma S.K., et al. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa) DNA Res. 2015;22:133–145. doi: 10.1093/dnares/dsu046. PubMed DOI PMC
Liu C., Chen K., Zhao X.Q., Wang X.Q., Shen C.C., Zhu Y.J., Dai M.L., Qiu X.J., Yang R.W., Xing D.Y., et al. Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice. 2019;12:88. doi: 10.1186/s12284-019-0349-z. PubMed DOI PMC
Yuan J., Wang X., Zhao Y., Khan N.U., Zhao Z., Zhang Y., Wen X., Tang F., Wang F., Li Z. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci. Rep. 2020;10:9958. doi: 10.1038/s41598-020-66604-7. PubMed DOI PMC
Lekklar C., Pongpanich M., Suriya-arunroj D., Chinpongpanich A., Tsai H., Comai L., Chadchawan S., Buaboocha T. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genom. 2019;20:76. doi: 10.1186/s12864-018-5317-2. PubMed DOI PMC
Ashraf M., Akram N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 2009;27:744–752. doi: 10.1016/j.biotechadv.2009.05.026. PubMed DOI
Arif Y., Singh P., Siddiqui H., Bajguz A., Hayat S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020;156:64–77. doi: 10.1016/j.plaphy.2020.08.042. PubMed DOI
Bhatt T., Sharma A., Puri S., Minhas A.P. Salt tolerance mechanisms and approaches: Future scope of halotolerant genes and rice landraces. Rice Sci. 2020;27:368–383. doi: 10.1016/j.rsci.2020.03.002. DOI
Sawahel W.A., Hassan A.H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Lett. 2002;24:721–725. doi: 10.1023/A:1015294319114. DOI
Su J., Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci. 2004;166:941–948. doi: 10.1016/j.plantsci.2003.12.004. DOI
Cortina C., Culiáñez-Macià F.A. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 2005;169:75–82. doi: 10.1016/j.plantsci.2005.02.026. DOI
Hmida-Sayari A., Gargouri-Bouzid R., Bidani A., Jaoua L., Savouré A., Jaoua S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 2005;169:746–752. doi: 10.1016/j.plantsci.2005.05.025. DOI
Huang J., Hirji R., Adam L., Rozwadowski K.L., Hammerlindl J.K., Keller W.A., Selvaraj G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant Physiol. 2000;122:747–756. doi: 10.1104/pp.122.3.747. PubMed DOI PMC
Ma L., Zhou E., Gao L., Mao X., Zhou R., Jia J. Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.) South Afr. J. Bot. 2008;74:705–712. doi: 10.1016/j.sajb.2008.05.003. DOI
Majee M., Maitra S., Dastidar K.G., Pattnaik S., Chatterjee A., Hait N.C., Das K.P., Majumder A.L. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J. Biol. Chem. 2004;279:28539–28552. PubMed
Cong L., Chai T.Y., Zhang Y.X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem. Biophys. Res. Commun. 2008;371:702–706. doi: 10.1016/j.bbrc.2008.04.126. PubMed DOI
Ijaz R., Ejaz J., Gao S., Liu T., Imtiaz M., Ye Z., Wang T. Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Sci. Rep. 2017;7:12087. doi: 10.1038/s41598-017-11168-2. PubMed DOI PMC
Dong W., Song Y., Zhao Z., Wei Qiu N., Liu X., Guo W. The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2017;490:225–230. doi: 10.1016/j.bbrc.2017.06.025. PubMed DOI
Chen Q.J., Meng X.P., Zhang Y., Xia M., Wang X.P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol. Lett. 2008;30:2191–2198. doi: 10.1007/s10529-008-9811-5. PubMed DOI
Nakashima K., Shinwari Z.K., Sakuma Y., Seki M., Miura S., Shinozaki K., Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol. Biol. 2000;42:657–665. doi: 10.1023/A:1006321900483. PubMed DOI
Narusaka Y., Nakashima K., Shinwari Z.K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K., Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003;34:137–148. doi: 10.1046/j.1365-313X.2003.01708.x. PubMed DOI
Wang C.T., Ru J.N., Liu Y.W., Yang J.F., Li M., Xu Z.S., Fu J.D. The Maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int. J. Mol. Sci. 2018;19:2580. doi: 10.3390/ijms19092580. PubMed DOI PMC
Muchate N.S., Nikalje G.C., Rajurkar N.S., Suprasanna P., Nikam T.D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 2016;82:371–406. doi: 10.1007/s12229-016-9173-y. DOI
Shinwari Z.K., Jan S.A., Nakashima K., Yamaguchi-Shinozaki K. Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol. Rep. 2020;14:151–162. doi: 10.1007/s11816-020-00598-6. DOI
Farhat S., Jain N., Singh N., Sreevathsa R., Dash P.K., Rai R., Yadav S., Kumar P., Sarkar A.K., Jain A. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin. Cell Dev. Biol. 2019;96:91–99. doi: 10.1016/j.semcdb.2019.05.003. PubMed DOI
Dhankher O.P., Foyer C.H. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 2018;41:877–884. doi: 10.1111/pce.13207. PubMed DOI
Yarra R. The wheat NHX gene family: Potential role in improving salinity stress tolerance of plants. Plant Gene. 2019;18:100178. doi: 10.1016/j.plgene.2019.100178. DOI
Razzaque S., Elias S.M., Haque T., Biswas S., Jewel G.N., Rahman S., Weng X., Ismail A.M., Walia H., Juenger T.E. Gene expression analysis associated with salt stress in a reciprocally crossed rice population. Sci. Rep. 2019;9:8249. doi: 10.1038/s41598-019-44757-4. PubMed DOI PMC
Kurotani K.I., Hayashi K., Hatanaka S., Toda Y., Ogawa D., Ichikawa H., Ishimaru Y., Tashita R., Suzuki T., Ueda M. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol. 2015;56:779–789. doi: 10.1093/pcp/pcv006. PubMed DOI
Razzaque S., Haque T., Elias S.M., Rahman M.S., Biswas S., Schwartz S., Ismail A.M., Walia H., Juenger T.E., Seraj Z.I. Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Sci. Rep. 2017;7:46138. doi: 10.1038/srep46138. PubMed DOI PMC
Shobbar Z., Ghaffari M., Mohammadi S., Daryani P. Salt tolerance involved candidate genes in rice: An integrative meta-analysis approach. BMC Plant Biol. 2020;20:452. PubMed PMC
Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Zhang F., Luo X., Wang J. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 2019;39:47. doi: 10.1007/s11032-019-0954-y. PubMed DOI PMC
Ma C., Burd S., Lers A. mi R 408 is involved in abiotic stress responses in Arabidopsis. Plant J. 2015;84:169–187. doi: 10.1111/tpj.12999. PubMed DOI
Wu J., Yang R., Yang Z., Yao S., Zhao S., Wang Y., Li P., Song X., Jin L., Zhou T. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants. 2017;3:1–7. doi: 10.1038/nplants.2016.203. PubMed DOI
Zhou J., Deng K., Cheng Y., Zhong Z., Tian L., Tang X., Tang A., Zheng X., Zhang T., Qi Y. CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front. Plant Sci. 2017;8:1598. doi: 10.3389/fpls.2017.01598. PubMed DOI PMC
Yuan S., Li Z., Li D., Yuan N., Hu Q., Luo H. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol. 2015;169:576–593. doi: 10.1104/pp.15.00899. PubMed DOI PMC
Muthuramalingam P., Krishnan S.R., Pandian S., Ramesh M. Emerging trends on abiotic stress tolerance investigation in crop plants. Adv. Biotechnol. Microbiol. 2017;6:1–2.
Muthuramalingam P., Jeyasri R., Krishnan S.R., Pandian S.T.K., Sathishkumar R., Ramesh M. Advances in Plant Transgenics: Methods and Applications. Springer; Singapore: 2019. Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.) pp. 59–77.
Pandian S., Rakkammal K., Rency A.S., Muthuramalingam P., Karutha Pandian S., Ramesh M. Agronomic Crops. Springer; Singapore: 2020. Abiotic Stress and Applications of Omics Approaches to Develop Stress Tolerance in Agronomic Crops; pp. 557–578.
Mochida K., Shinozaki K. Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol. 2010;51:497–523. doi: 10.1093/pcp/pcq027. PubMed DOI PMC
Lister R., Gregory B.D., Ecker J.R. Next is now: New technologies for sequencing of genomes, transcriptomes, and beyond. Curr. Opin. Plant Biol. 2009;12:107–118. doi: 10.1016/j.pbi.2008.11.004. PubMed DOI PMC
Arabidopsis Interactome Mapping Consortium Evidence for network evolution in an Arabidopsis interactome map. Science. 2011;333:601–607. doi: 10.1126/science.1203877. PubMed DOI PMC
Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., Ashikari M., Ueguchi-Tanaka M., Matsuoka M., Suzuki K., et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography–tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009;50:1201–1214. doi: 10.1093/pcp/pcp057. PubMed DOI PMC
Saito K., Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 2010;61:463–489. doi: 10.1146/annurev.arplant.043008.092035. PubMed DOI
Muthuramalingam P., Krishnan S.R., Pandian S., Mareeswaran N., Aruni W., Pandian S.K., Ramesh M. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 2018;8:9270. doi: 10.1038/s41598-018-27703-8. PubMed DOI PMC
Muthuramalingam P., Jeyasri R., Selvaraj A., Pandian S.K., Ramesh M. Integrated transcriptomic and metabolomic analyses of glutamine metabolism genes unveil key players in Oryza sativa (L.) to ameliorate the unique and combined abiotic stress tolerance. Int. J. Biol. Macromol. 2020;164:222–231. doi: 10.1016/j.ijbiomac.2020.07.143. PubMed DOI
Yang W., Duan L., Chen G., Xiong L., Liu Q. Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies. Curr. Opin. Plant Biol. 2013;16:180–187. doi: 10.1016/j.pbi.2013.03.005. PubMed DOI
Shinozaki K., Sakakibara H. Omics and bioinformatics: An essential toolbox for systems analyses of plant functions beyond 2010. Plant Cell Physiol. 2009;50:1177–1180. doi: 10.1093/pcp/pcp085. PubMed DOI PMC
Song S., Tian D., Zhang Z., Hu S., Yu J. Rice genomics: Over the past two decades and into the future. Genom. Proteom. Bioinform. 2019;16:397–404. doi: 10.1016/j.gpb.2019.01.001. PubMed DOI PMC
Kanehisa M., Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Fumagalli E., Baldoni E., Abbruscato P., Piffanelli P., Genga A., Lamanna R., Consonni R. NMR techniques coupled with multivariate statistical analysis: Tools to analyse Oryza sativa metabolic content under stress conditions. J. Agron. Crop Sci. 2009;195:77–88. doi: 10.1111/j.1439-037X.2008.00344.x. DOI
Ma N.L., Rahmat Z., Lam S.S. A Review of the “Omics” approach to biomarkers of oxidative stress in Oryza sativa. Int. J. Mol. Sci. 2013;14:7515–7541. doi: 10.3390/ijms14047515. PubMed DOI PMC
Grainger C.M., Rajcan I. Characterization of the genetic changes in amulti-generational pedigree of an elite Canadian soybean cultivar. Theor. Appl. Genet. 2013;127:211–229. doi: 10.1007/s00122-013-2211-9. PubMed DOI
Obata T., Fernie A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol. Life Sci. 2012;69:3225–3243. doi: 10.1007/s00018-012-1091-5. PubMed DOI PMC
Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A., Lin J., Minguez P., Bork P., Von Mering C., et al. STRING v9. 1, protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41:D808–D815. doi: 10.1093/nar/gks1094. PubMed DOI PMC
Orozco A., Morera J., Jiménez S., Boza R. A review of bioinformatics training applied to research in molecular medicine, agriculture and biodiversity in Costa Rica and Central America. Brief. Bioinform. 2013;14:661–670. doi: 10.1093/bib/bbt033. PubMed DOI
Yachdav G., Kloppmann E., Kajan L., Hecht M., Goldberg T., Hamp T., Hönigschmid P., Schafferhans A., Roos M., Bernhofer M., et al. PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014;42:W337–W343. doi: 10.1093/nar/gku366. PubMed DOI PMC
Henry V.J., Bandrowski A.E., Pepin A.S., Gonzalez B.J., Desfeux A. OMICtools: An informative directory for multi-omic data analysis. Database. 2014;2014 doi: 10.1093/database/bau069. PubMed DOI PMC
Franz M., Lopes C.T., Huck G., Dong Y., Sumer O., Bader G.D. Cytoscape. js: A graph theory library for visualisation and analysis. Bioinformatics. 2016;32:309–311. PubMed PMC
Singh V.K., Singh A.K., Chand R., Kushwaha C. Role of bioinformatics in agriculture and sustainable development. Int. J. Bioinform. Res. 2011;3:221–226.
Eyras E., Reymond A., Castelo R., Bye J.M., Camara F., Flicek P., Huckle E.J., Parra G., Shteynberg D.D., Wyss C., et al. Gene finding in the chicken genome. BMC Bioinform. 2005;6:131. doi: 10.1186/1471-2105-6-131. PubMed DOI PMC
Porcel R., Redondo-Gomez S., Mateos-Naranjo E., Aroca R., Garcia R., Ruiz-Lozano J.M. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 2015;185:75–83. doi: 10.1016/j.jplph.2015.07.006. PubMed DOI
Porcel R., Aroca R., Azcon R., Ruiz-Lozano J.M. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza. 2016;26:673–684. doi: 10.1007/s00572-016-0704-5. PubMed DOI
Parvin S., Van Geel M., Yeasmin T., Lievens B., Honnay O. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Sci. Total Environ. 2019;686:546–554. doi: 10.1016/j.scitotenv.2019.05.450. PubMed DOI
Parvin S., Van Geel M., Yeasmin T., Verbruggen E., Honnay O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa) cultivar. Mycorrhiza. 2020;30:431–444. doi: 10.1007/s00572-020-00957-9. PubMed DOI
Yang L., Zou Y.N., Tian Z.H., Wu Q.S., Kuča K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 2021;277:109815. doi: 10.1016/j.scienta.2020.109815. DOI
Wu Q.S., Zou Y.N., He X.H. Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Sci. Hortic. 2013;160:366–374. doi: 10.1016/j.scienta.2013.06.011. DOI
Ding Y.E., Fan Q.F., He J.D., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Arch. Agron. Soil Sci. 2020;66:182–192. doi: 10.1080/03650340.2019.1607313. DOI
Zou Y.N., Wu Q.S., Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021;23((Suppl. 1)):50–57. doi: 10.1111/plb.13161. PubMed DOI
Wu Q.S., Srivastava A.K., Zou Y.N. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 2013;164:77–87. doi: 10.1016/j.scienta.2013.09.010. DOI