tick-host interaction
Dotaz
Zobrazit nápovědu
UNLABELLED: We investigated the tripartite interactions between two intracellular bacterial symbionts, Cardinium and Wolbachia in Tyrophagus putrescentiae. Cultures of Tyrophagus putrescentiae are typically single-infected by one intracellular symbiont. However, co-infection can be experimentally induced by mixing single-infected cultures, resulting in 10% of mite individuals being double-infected (Cardinium + Wolbachia) and a corresponding reduction in host fitness. Here, we assembled the genomes of Cardinium and Wolbachia and analyzed their gene expression in parental single-infected and mixed mite cultures using population-level samples (ranging from 7,500 to 10,000 mites). Wolbachia interacts more extensively with its mite host than Cardinium in single-infected cultures. However, in mixed cultures, (i) Wolbachia exhibited reduced regulation of the host compared with Cardinium; (ii) the gene expression profile of Cardinium shifted, increasing its interactions with the host, whereas the gene expression profile of Wolbachia remained unchanged; and (iii) Wolbachia genes exhibited a loss of interactions with mite gene expression, as indicated by reduced correlations (for example with host MAPK, endocytosis, and calcium signaling pathways). The experiments show that at the mite population level, symbiont infection disrupts gene expression interaction between the two symbionts and their host in different ways. Wolbachia was more influenced by Cardinium gene expression than vice versa. Cardinium can inhibit the growth of Wolbachia by disrupting its interaction with the host, leading to a loss of Wolbachia's influence on mite immune and regulatory pathways. The reasons for responses are due to co-infection or the reduced frequency of Wolbachia single-infected individuals due to the analyses of population-level samples. IMPORTANCE: We found that Cardinium disrupts the interaction between Wolbachia and mite host. In Wolbachia single-infected cultures, strong correlations exist between symbiont and host gene expressions. Interestingly, although Cardinium can also interact with the host, this interaction appears weaker compared with Wolbachia in single-infected cultures. These results suggest that both symbionts affect mite host gene expression, particularly in immune and regulatory pathways. In mixed samples, Cardinium appears to outcompete Wolbachia by disrupting its host interaction. It indicates competition between these two intracellular symbionts in mite populations. Wolbachia belongs to a mite-specific supergroup Q, distinct from the more commonly studied Wolbachia supergroups. As these mite-specific bacteria exhibit pathogen-blocking effects, our findings may have relevance for other systems, such as ticks and tick-borne diseases. The study sheds light on intracellular symbiont interaction within a novel mite-symbiont model.
- MeSH
- Bacteroidetes * fyziologie genetika MeSH
- roztoči * mikrobiologie MeSH
- symbióza MeSH
- Wolbachia * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ticks are important vectors of various microorganisms, including bacteria. In this study, we examined Hyalomma aegyptium ticks collected from 240 spur-thighed tortoises Testudo graeca at 42 localities in the Mediterranean and Middle East and analysed them for the presence of bacteria of the genera Anaplasma, Borrelia, Coxiella, and Rickettsia. Altogether, 576 out of 928 analysed ticks (62.1%) were positive for at least one of the tested bacteria. The highest prevalence in individual ticks was found for Borrelia turcica (43.6%), followed by Rickettsia (12.3%) and Anaplasma (6.1%). No sample was positive for Coxiella burnetii. Among Rickettsia, we detected two species, Rickettsia africae and Rickettsia aeschlimannii, and also other unspecified Rickettsia. Anaplasma (100% identity with A. phagocytophilum) was detected at 15 (35%) out of 42 studied localities, any of Rickettsia at 28 (67%), and B. turcica at 32 (76%) localities. The geographic distribution of the studied microorganisms varied, with none of them detected in Syria, and only Rickettsia spp. detected in Morocco. Sequence analysis revealed substantial genetic variability in all detected agents, with the most variable (36 new haplotypes) being glpQ gene used as a marker for B. turcica. We also analysed the prevalence of various co-infections among studied ticks, with the mean number of co-infected ticks per tortoise increased with the number of ticks per tortoise. However, the frequencies of co-infected ticks do not indicate the presence of antagonistic or synergistic facilitative interactions between the agents. According to our data, we could expect that the eco-epidemiological importance of H. aegyptium does not stem from their tortoise hosts but rather from the low host specificity of its larvae and nymphs, feeding on a wider spectrum of reptilian, avian, and mammalian hosts.
- MeSH
- Anaplasma * izolace a purifikace MeSH
- Borrelia izolace a purifikace MeSH
- Coxiella izolace a purifikace genetika MeSH
- infestace klíšťaty veterinární epidemiologie parazitologie MeSH
- Ixodidae * mikrobiologie růst a vývoj MeSH
- Rickettsia * izolace a purifikace MeSH
- želvy * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Střední východ MeSH
- Středomoří MeSH
UNLABELLED: Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE: Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
- MeSH
- Borrelia burgdorferi komplex genetika klasifikace MeSH
- Borrelia burgdorferi genetika klasifikace MeSH
- Borrelia genetika klasifikace MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- interakce mikroorganismu a hostitele genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- lipoproteiny * genetika MeSH
- lymeská nemoc * mikrobiologie přenos MeSH
- molekulární evoluce MeSH
- plazmidy genetika MeSH
- rekombinace genetická * MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
The life cycle of enveloped viruses is closely linked to host-cell lipids. However, changes in lipid metabolism during infections with the tick-borne encephalitis virus (TBEV) have not been described. TBEV is a medically important orthoflavivirus, which is endemic to many parts of Europe and Asia. In the present study, we performed targeted lipidomics with HPLC-MS/MS to evaluate changes in phospholipid and sphingolipid concentrations in TBEV-infected human neuronal SK-N-SH cells. TBEV infections significantly increased phosphatidylcholine, phosphatidylinositol, and phosphatidylserine levels within 48 h post-infection (hpi). Sphingolipids were slightly increased in dihydroceramides within 24 hpi. Later, at 48 hpi, the contents of sphinganine, dihydroceramides, ceramides, glucosylceramides, and ganglioside GD3 were elevated. On the other hand, sphingosine-1-phosphate content was slightly reduced in TBEV-infected cells. Changes in sphingolipid concentrations were accompanied by suppressed expression of a majority of the genes linked to sphingolipid and glycosphingolipid metabolism. Furthermore, we found that a pharmacological inhibitor of sphingolipid synthesis, fenretinide (4-HPR), inhibited TBEV infections in SK-N-SH cells. Taken together, our results suggested that both structural and signaling functions of lipids could be affected during TBEV infections. These changes might be connected to virus propagation and/or host-cell defense.
- MeSH
- buněčné linie MeSH
- fosfolipidy * metabolismus MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- lipidomika MeSH
- metabolismus lipidů MeSH
- neurony * virologie metabolismus MeSH
- sfingolipidy * metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- viry klíšťové encefalitidy * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. METHODS: We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. FINDINGS: Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. INTERPRETATION: To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.
- Publikační typ
- časopisecké články MeSH
Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.
- MeSH
- Argasidae * MeSH
- Borrelia * fyziologie MeSH
- Ornithodoros * MeSH
- sliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.
Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in regions of endemicity of northern Asia and central and northern Europe. Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show that the most significant role is that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of coculture assays suggest that TBEV might partially escape interferon- and IFITM-mediated suppression during high-density coculture infection when the virus enters naive cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. IMPORTANCE TBEV infection may result in encephalitis, chronic illness, or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new centers of endemicity have arisen. Although effective TBEV vaccines have been approved, vaccination coverage is low, and due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies on the role of IFITM proteins in TBEV infection have been published thus far. Understanding antiviral innate immune responses is crucial for the future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both interferon- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.
- MeSH
- buněčné linie MeSH
- cytopatogenní efekt virový MeSH
- exprese genu MeSH
- genový knockdown MeSH
- interakce hostitele a patogenu * genetika imunologie MeSH
- interakční proteinové domény a motivy MeSH
- interferony metabolismus MeSH
- klíšťová encefalitida genetika imunologie metabolismus virologie MeSH
- lidé MeSH
- membránové proteiny chemie genetika metabolismus MeSH
- multigenová rodina MeSH
- náchylnost k nemoci MeSH
- odolnost vůči nemocem genetika imunologie MeSH
- replikace viru MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- viry klíšťové encefalitidy fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ixodes ricinus ticks are distributed across Europe and are a vector of tick-borne diseases. Although I. ricinus transcriptome studies have focused exclusively on protein coding genes, the last decade witnessed a strong increase in long non-coding RNA (lncRNA) research and characterization. Here, we report for the first time an exhaustive analysis of these non-coding molecules in I. ricinus based on 131 RNA-seq datasets from three different BioProjects. Using this data, we obtained a consensus set of lncRNAs and showed that lncRNA expression is stable among different studies. While the length distribution of lncRNAs from the individual data sets is biased toward short length values, implying the existence of technical artefacts, the consensus lncRNAs show a more homogeneous distribution emphasizing the importance to incorporate data from different sources to generate a solid reference set of lncRNAs. KEGG enrichment analysis of host miRNAs putatively targeting lncRNAs upregulated upon feeding showed that these miRNAs are involved in several relevant functions for the tick-host interaction. The possibility that at least some tick lncRNAs act as host miRNA sponges was further explored by identifying lncRNAs with many target regions for a given host miRNA or sets of host miRNAs that consistently target lncRNAs together. Overall, our findings suggest that lncRNAs that may act as sponges have diverse biological roles related to the tick-host interaction in different tissues.
- MeSH
- klíště * genetika MeSH
- mikro RNA * genetika MeSH
- nemoci přenášené klíšťaty * MeSH
- RNA dlouhá nekódující * genetika MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ticks are blood-feeding arthropods that use the components of their salivary glands to counter the host's hemostatic, inflammatory, and immune responses. The tick midgut also plays a crucial role in hematophagy. It is responsible for managing blood meals (storage and digestion) and protecting against host immunity and pathogen infections. Previous transcriptomic studies revealed the complexity of tick sialomes (salivary gland transcriptomes) and mialomes (midgut transcriptomes) which encode for protease inhibitors, lipocalins (histamine-binding proteins), disintegrins, enzymes, and several other tick-specific proteins. Several studies have demonstrated that mammalian hosts acquire tick resistance against repeated tick bites. Consequently, there is an urgent need to uncover how tick sialomes and mialomes respond to resistant hosts, as they may serve to develop novel tick control strategies and applications. Here, we mimicked natural repeated tick bites in a laboratory setting and analyzed gene expression dynamics in the salivary glands and midguts of adult female ticks. Rabbits were subjected to a primary (feeding on a naive host) and a secondary infestation of the same host (we re-exposed the hosts but to other ticks). We used single salivary glands and midguts dissected from individual siblings adult pathogen-free female Ixodes ricinus to reduce genetic variability between individual ticks. The comprehensive analysis of 88 obtained RNA-seq data sets allows us to provide high-quality annotated sialomes and mialomes from individual ticks. Comparisons between fed/unfed, timepoints, and exposures yielded as many as 3000 putative differentially expressed genes (DEG). Interestingly, when classifying the exposure DEGs by means of a clustering approach we observed that the majority of these genes show increased expression at early feeding time-points in the mid-gut of re-exposed ticks. The existence of clearly defined groups of genes with highly similar responses to re-exposure suggests the existence of molecular swiches. In silico functional analysis shows that these early feeding reexposure response genes form a dense interaction network at protein level being related to virtually all aspects of gene expression regulation and glycosylation. The processed data is available through an easy-to-use database-associated webpage (https://arn.ugr.es/IxoriDB/) that can serve as a valuable resource for tick research.
- MeSH
- klíště * genetika MeSH
- kousnutí klíštětem * MeSH
- králíci MeSH
- obratlovci MeSH
- proteiny členovců genetika metabolismus MeSH
- savci genetika MeSH
- slinné žlázy metabolismus MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH