Visualization of Spirochetes by Labeling Membrane Proteins With Fluorescent Biarsenical Dyes
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
PubMed
31482073
PubMed Central
PMC6710359
DOI
10.3389/fcimb.2019.00287
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia, Leptospira, biarsenical dye, fluorescent protein, spirochetes, tetracysteine tag,
- MeSH
- bakteriální geny MeSH
- bakteriální proteiny genetika metabolismus MeSH
- barvení a značení * MeSH
- fluorescenční barviva * MeSH
- fluorescenční mikroskopie * MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- myši MeSH
- průtoková cytometrie MeSH
- Spirochaetales cytologie genetika metabolismus MeSH
- spirochetové infekce mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fluorescenční barviva * MeSH
- membránové proteiny MeSH
Numerous methods exist for fluorescently labeling proteins either as direct fusion proteins (GFP, RFP, YFP, etc.-attached to the protein of interest) or utilizing accessory proteins to produce fluorescence (SNAP-tag, CLIP-tag), but the significant increase in size that these accompanying proteins add may hinder or impede proper protein folding, cellular localization, or oligomerization. Fluorescently labeling proteins with biarsenical dyes, like FlAsH, circumvents this issue by using a short 6-amino acid tetracysteine motif that binds the membrane-permeable dye and allows visualization of living cells. Here, we report the successful adaptation of FlAsH dye for live-cell imaging of two genera of spirochetes, Leptospira and Borrelia, by labeling inner or outer membrane proteins tagged with tetracysteine motifs. Visualization of labeled spirochetes was possible by fluorescence microscopy and flow cytometry. A subsequent increase in fluorescent signal intensity, including prolonged detection, was achieved by concatenating two copies of the 6-amino acid motif. Overall, we demonstrate several positive attributes of the biarsenical dye system in that the technique is broadly applicable across spirochete genera, the tetracysteine motif is stably retained and does not interfere with protein function throughout the B. burgdorferi infectious cycle, and the membrane-permeable nature of the dyes permits fluorescent detection of proteins in different cellular locations without the need for fixation or permeabilization. Using this method, new avenues of investigation into spirochete morphology and motility, previously inaccessible with large fluorescent proteins, can now be explored.
Faculty of Science University of South Bohemia in České Budějovice České Budějovice Czechia
Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Adams S. R., Campbell R. E., Gross L. A., Martin B. R., Walkup G. K., Yao Y., et al. . (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076. 10.1021/ja017687n PubMed DOI
Andresen M., Schmitz-Salue R., Jakobs S. (2004). Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. Mol. Biol. Cell 15, 5616–5622. 10.1091/mbc.e04-06-0454 PubMed DOI PMC
Arhel N., Genovesio A., Kim K. A., Miko S., Perret E., Olivo-Marin J. C., et al. . (2006). Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat. Methods 3, 817–824. 10.1038/nmeth928 PubMed DOI
Aviat F., Slamti L., Cerqueira G. M., Lourdault K., Picardeau M. (2010). Expanding the genetic toolbox for Leptospira species by generation of fluorescent bacteria. Appl. Environ. Microbiol. 76, 8135–8142. 10.1128/AEM.02199-10 PubMed DOI PMC
Bockenstedt L. K., Gonzalez D. G., Haberman A. M., Belperron A. A. (2012). Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J. Clin. Invest. 122, 2652–2660. 10.1172/JCI58813 PubMed DOI PMC
Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. (1982). Lyme disease-a tick-borne spirochetosis? Science 216, 1317–1319. PubMed
Bykowski T., Babb K., von Lackum K., Riley S. P., Norris S. J., Stevenson B. (2006). Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein. J. Bacteriol. 188, 4879–4889. 10.1128/JB.00229-06 PubMed DOI PMC
Carrasco S. E., Troxell B., Yang Y., Brandt S. L., Li H., Sandusky G. E., et al. . (2015). Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect. Immun. 83, 4848–4860. 10.1128/IAI.01215-15 PubMed DOI PMC
Carroll J. A., Stewart P. E., Rosa P., Elias A. F., Garon C. F. (2003). An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149(Pt 7), 1819–1828. 10.1099/mic.0.26165-0 PubMed DOI
Cerqueira G. M., Souza N. M., Araujo E. R., Barros A. T., Morais Z. M., Vasconcellos S. A., et al. . (2011). Development of transcriptional fusions to assess Leptospira interrogans promoter activity. PLoS ONE 6:e17409. 10.1371/journal.pone.0017409 PubMed DOI PMC
Clifton D. R., Nolder C. L., Hughes J. L., Nowalk A. J., Carroll J. A. (2006). Regulation and expression of bba66 encoding an immunogenic infection-associated lipoprotein in Borrelia burgdorferi. Mol. Microbiol. 61, 243–258. 10.1111/j.1365-2958.2006.05224.x PubMed DOI
Copeland M. F., Flickinger S. T., Tuson H. H., Weibel D. B. (2010). Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes. Appl. Environ. Microbiol. 76, 1241–1250. 10.1128/AEM.02153-09 PubMed DOI PMC
Crivat G., Tokumasu F., Sa J. M., Hwang J., Wellems T. E. (2011). Tetracysteine-based fluorescent tags to study protein localization and trafficking in Plasmodium falciparum-infected erythrocytes. PLoS ONE 6:e22975. 10.1371/journal.pone.0022975 PubMed DOI PMC
Dunham-Ems S. M., Caimano M. J., Pal U., Wolgemuth C. W., Eggers C. H., Balic A., et al. . (2009). Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Invest. 119, 3652–3665. 10.1172/JCI39401 PubMed DOI PMC
Eggers C. H., Caimano M. J., Radolf J. D. (2006). Sigma factor selectivity in Borrelia burgdorferi: RpoS recognition of the ospE/ospF/elp promoters is dependent on the sequence of the −10 region. Mol. Microbiol. 59, 1859–1875. 10.1111/j.1365-2958.2006.05066.x PubMed DOI
Elias A. F., Bono J. L., Kupko J. J., III., Stewart P. E., Krum J. G., Rosa P. A. (2003). New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J. Mol. Microbiol. Biotechnol. 6, 29–40. 10.1159/000073406 PubMed DOI
Elias A. F., Stewart P. E., Grimm D., Caimano M. J., Eggers C. H., Tilly K., et al. . (2002). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect. Immun. 70, 2139–2150. 10.1128/iai.70.4.2139-2150.2002 PubMed DOI PMC
Enninga J., Mounier J., Sansonetti P., Tran Van Nhieu G. (2005). Secretion of type III effectors into host cells in real time. Nat. Methods 2, 959–965. 10.1038/nmeth804 PubMed DOI
Frank K. L., Bundle S. F., Kresge M. E., Eggers C. H., Samuels D. S. (2003). aadA confers streptomycin resistance in Borrelia burgdorferi. J. Bacteriol. 185, 6723–6727. 10.1128/jb.185.22.6723-6727.2003 PubMed DOI PMC
Gaspersic J., Hafner-Bratkovic I., Stephan M., Veranic P., Bencina M., Vorberg I., et al. . (2010). Tetracysteine-tagged prion protein allows discrimination between the native and converted forms. FEBS J. 277, 2038–2050. 10.1111/j.1742-4658.2010.07619.x PubMed DOI
Gautam A., Hathaway M., McClain N., Ramesh G., Ramamoorthy R. (2008). Analysis of the determinants of bba64 (P35) gene expression in Borrelia burgdorferi using a gfp reporter. Microbiology 154(Pt 1), 275–285. 10.1099/mic.0.2007/011676-0 PubMed DOI
Gautam A., Hathaway M., Ramamoorthy R. (2009). The Borrelia burgdorferi flaB promoter has an extended −10 element and includes a T-rich−35/-10 spacer sequence that is essential for optimal activity. FEMS Microbiol. Lett. 293, 278–284. 10.1111/j.1574-6968.2009.01542.x PubMed DOI PMC
Grewe C., Nuske J. H. (1996). Immunolocalization of a 22 kDa protein (IPLA7, P22) of Borrelia burgdorferi. FEMS Microbiol. Lett. 138, 215–219. 10.1111/j.1574-6968.1996.tb08160.x PubMed DOI
Griffin B. A., Adams S. R., Tsien R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272. PubMed
Grove A. P., Liveris D., Iyer R., Petzke M., Rudman J., Caimano M. J., et al. . (2017). Two distinct mechanisms govern RpoS-mediated repression of tick-phase genes during mammalian host adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete. MBio 8:4. 10.1128/mBio.01204-17 PubMed DOI PMC
Jewett M. W., Byram R., Bestor A., Tilly K., Lawrence K., Burtnick M. N., et al. . (2007). Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi. Mol. Microbiol. 66, 975–990. 10.1111/j.1365-2958.2007.05969.x PubMed DOI PMC
Krishnavajhala A., Wilder H. K., Boyle W. K., Damania A., Thornton J. A., Perez de Leon A. A., et al. . (2017). Imaging of Borrelia turicatae producing the green fluorescent protein reveals persistent colonization of the Ornithodoros turicata midgut and salivary glands from nymphal acquisition through transmission. Appl. Environ. Microbiol. 83:5. 10.1128/AEM.02503-16 PubMed DOI PMC
Louvel H., Picardeau M. (2007). Genetic manipulation of Leptospira biflexa. Curr. Protoc. Microbiol. Chapter 12, Unit 12E 14. 10.1002/9780471729259.mc12e04s05 PubMed DOI
Matsunaga J., Haake D. A. (2018). Identification of a cis-acting determinant limiting expression of sphingomyelinase gene sph2 in Leptospira interrogans with a gfp reporter plasmid. Appl. Environ. Microbiol. 84:e02068-18. 10.1128/AEM.02068-18 PubMed DOI PMC
Miller J. C., von Lackum K., Woodman M. E., Stevenson B. (2006). Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb. Pathog. 41, 43–47. 10.1016/j.micpath.2006.04.004 PubMed DOI
Moriarty T. J., Norman M. U., Colarusso P., Bankhead T., Kubes P., Chaconas G. (2008). Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog. 4:e1000090. 10.1371/journal.ppat.1000090 PubMed DOI PMC
Norman M. U., Moriarty T. J., Dresser A. R., Millen B., Kubes P., Chaconas G. (2008). Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 4:e1000169. 10.1371/journal.ppat.1000169 PubMed DOI PMC
Pal U., Dai J., Li X., Neelakanta G., Luo P., Kumar M., et al. . (2008). A differential role for BB0365 in the persistence of Borrelia burgdorferi in mice and ticks. J. Infect. Dis. 197, 148–155. 10.1086/523764 PubMed DOI
Panchal R. G., Ruthel G., Kenny T. A., Kallstrom G. H., Lane D., Badie S. S., et al. . (2003). In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc. Natl. Acad. Sci. U.S.A. 100, 15936–15941. 10.1073/pnas.2533915100. PubMed DOI PMC
Samuels D. S., Mach K. E., Garon C. F. (1994). Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J. Bacteriol. 176, 6045–6049. PubMed PMC
Schulze R. J., Chen S., Kumru O. S., Zuckert W. R. (2010). Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol. Microbiol. 76, 1266–1278. 10.1111/j.1365-2958.2010.07172.x PubMed DOI PMC
Schulze R. J., Zuckert W. R. (2006). Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol 59, 1473–1484. 10.1111/j.1365-2958.2006.05039.x PubMed DOI
Senf F., Tommassen J., Koster M. (2008). Polar secretion of proteins via the Xcp type II secretion system in Pseudomonas aeruginosa. Microbiology 154(Pt. 10), 3025–3032. 10.1099/mic.0.2008/018069-0 PubMed DOI
Stewart P. E., Bestor A., Cullen J. N., Rosa P. A. (2008). A tightly regulated surface protein of Borrelia burgdorferi is not essential to the mouse-tick infectious cycle. Infect. Immun. 76, 1970–1978. 10.1128/IAI.00714-07 PubMed DOI PMC
Stewart P. E., Carroll J. A., Olano L. R., Sturdevant D. E., Rosa P. A. (2016). Multiple posttranslational modifications of Leptospira biflexa proteins as revealed by proteomic analysis. Appl. Environ. Microbiol. 82, 1183–1195. 10.1128/AEM.03056-15 PubMed DOI PMC
Takacs C. N., Kloos Z. A., Scott M., Rosa P. A., Jacobs-Wagner C. (2018). Characterization of fluorescent proteins, promoters, and selectable markers for applications in the Lyme disease spirochete Borrelia burgdorferi. Appl Environ Microbiol. 84:24 10.1128/AEM.01824-18 PubMed DOI PMC
Teixeira R. C., Baeta B. A., Ferreira J. S., Medeiros R. C., Maya-Monteiro C. M., Lara F. A., et al. . (2016). Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines. Braz. J. Med. Biol. Res. 49:7. 10.1590/1414-431X20165211 PubMed DOI PMC
Van Engelenburg S. B., Nahreini T., Palmer A. E. (2010). FACS-based selection of tandem tetracysteine peptides with improved ReAsH brightness in live cells. Chembiochem 11, 489–493. 10.1002/cbic.200900689 PubMed DOI PMC
von Lackum K., Ollison K. M., Bykowski T., Nowalk A. J., Hughes J. L., Carroll J. A., et al. . (2007). Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochaete's mammal-tick infectious cycle. Microbiology 153(Pt 5), 1361–1371. 10.1099/mic.0.2006/003350-0 PubMed DOI
Whetstine C. R., Slusser J. G., Zuckert W. R. (2009). Development of a single-plasmid-based regulatable gene expression system for Borrelia burgdorferi. Appl. Environ. Microbiol. 75, 6553–6558. 10.1128/AEM.02825-08 PubMed DOI PMC
Xu H., Raddi G., Liu J., Charon N. W., Li C. (2011). Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. J. Bacteriol. 193, 2652–2656. 10.1128/JB.01530-10 PubMed DOI PMC
Yang X., Hegde S., Shroder D. Y., Smith A. A., Promnares K., Neelakanta G., et al. . (2013). The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naive hosts. Microbes Infect. 15, 729–737. 10.1016/j.micinf.2013.06.001 PubMed DOI PMC
Zhang K., Liu J., Charon N. W., Li C. (2015). Hypothetical protein BB0569 is essential for chemotaxis of the Lyme disease spirochete Borrelia burgdorferi. J. Bacteriol. 198, 664–672. 10.1128/JB.00877-15 PubMed DOI PMC
Zhao Z., Zhao Y., Zhuang X. Y., Lo W. C., Baker M. A. B., Lo C. J., et al. . (2018). Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging. Nat. Commun. 9:1885. 10.1038/s41467-018-04288-4 PubMed DOI PMC