Sex and Feeding Status Differently Affect Natural Reward Seeking Behavior in Olfactory Bulbectomized Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30425627
PubMed Central
PMC6218565
DOI
10.3389/fnbeh.2018.00255
Knihovny.cz E-zdroje
- Klíčová slova
- depression, food intake, olfactory bulbectomy, reward, self-administration, sex difference,
- Publikační typ
- časopisecké články MeSH
Substance abuse and depression are common psychiatric disorders with a high rate of comorbidity. Both conditions affect differently men and women and preclinical research has showed many sex differences in drug addiction and depression. The most common approach for modeling depression-addiction comorbidity is the combination of the intravenous drug self-administration and the olfactory bulbectomy (OBX) models in rats. Such a combination has revealed enhanced drug-taking and drug-seeking behaviors in OBX rats, but no study has investigated so far potential sex differences in operant responding and motivation for natural reinforcers in OBX rats. This study investigated for the first time operant self-administration of palatable food pellets in male and female OBX rats under different feeding status, i.e., ad libitum vs. restricted food, and schedules of reinforcement, i.e., a continuous ratio schedule fixed ratio 1 (FR1) vs. a complex (FR5(x)) second order schedule of reinforcement. In the FR1 experiment, OBX rats of both sexes exhibited lower operant responding and intake of palatable food pellets than sham-operated controls, with food restriction leading to increased operant responding in both OBX and SHAM groups. Female rats showed higher responding than males but this effect was abolished by the OBX lesion. Similarly, in the (FR5(x)) second order schedule of reinforcement both male and female OBX rats showed lower responding and food intake, with SHAM and OBX females showing higher operant responding than corresponding male groups. Overall, our findings showed that: (i) responding for food was lower in OBX than in SHAM rats under both FR1 and (FR5(x)) schedules of reinforcement; (ii) sex and food restriction affect operant responding for palatable food; and (iii) the suppressing effect of OBX lesion on food intake was consistently present in both sexes and represents the most robust factor in the analysis. This may represent anhedonia which is associated with depressive-like phenotype and palatable food self-administration may serve as a robust behavioral index of anhedonia in the OBX model.
Center of Excellence Neurobiology of Addiction University of Cagliari Monserrato Italy
CNR Institute of Neuroscience Cagliari National Research Council Rome Italy
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czechia
Zobrazit více v PubMed
Ahn S., Phillips A. G. (1999). Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J. Neurosci. 19:RC29. 10.1523/jneurosci.19-19-j0003.1999 PubMed DOI PMC
Amchova P., Kucerova J., Giugliano V., Babinska Z., Zanda M., Scherma M., et al. . (2014). Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front. Pharmacol. 5:44. 10.3389/fphar.2014.00044 PubMed DOI PMC
Babinska Z., Ruda-Kucerova J. (2017). Differential characteristics of ketamine self-administration in the olfactory bulbectomy model of depression in male rats. Exp. Clin. Psychopharmacol. 25, 84–93. 10.1037/pha0000106 PubMed DOI
Beatty W. W., Costello K. B. (1983). Olfactory bulbectomy and play fighting in juvenile rats. Physiol. Behav. 30, 525–528. 10.1016/0031-9384(83)90215-9 PubMed DOI
Becker J. B., Koob G. F. (2016). Sex differences in animal models: focus on addiction. Pharmacol. Rev. 68, 242–263. 10.1124/pr.115.011163 PubMed DOI PMC
Blum K., Liu Y., Shriner R., Gold M. S. (2011). Reward circuitry dopaminergic activation regulates food and drug craving behavior. Curr. Pharm. Des. 17, 1158–1167. 10.2174/138161211795656819 PubMed DOI
Buoncervello M., Marconi M., Carè A., Piscopo P., Malorni W., Matarrese P. (2017). Preclinical models in the study of sex differences. Clin. Sci. 131, 449–469. 10.1042/cs20160847 PubMed DOI
Calcagnetti D. J., Quatrella L. A., Schechter M. D. (1996). Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol. Behav. 59, 597–604. 10.1016/0031-9384(95)02119-1 PubMed DOI
Dalla C., Pitychoutis P. M., Kokras N., Papadopoulou-Daifoti Z. (2010). Sex differences in animal models of depression and antidepressant response. Basic Clin. Pharmacol. Toxicol. 106, 226–233. 10.1111/j.1742-7843.2009.00516.x PubMed DOI
Dalla C., Shors T. J. (2009). Sex differences in learning processes of classical and operant conditioning. Physiol. Behav. 97, 229–238. 10.1016/j.physbeh.2009.02.035 PubMed DOI PMC
Day J. J., Jones J. L., Wightman R. M., Carelli R. M. (2010). Phasic nucleus accumbens dopamine release encodes effort- and delay-related costs. Biol. Psychiatry 68, 306–309. 10.1016/j.biopsych.2010.03.026 PubMed DOI PMC
Edwards D. A., Griffis K. T., Tardivel C. (1990). Olfactory bulb removal: effects on sexual behavior and partner-preference in male rats. Physiol. Behav. 48, 447–450. 10.1016/0031-9384(90)90342-2 PubMed DOI
Fattore L., Altea S., Fratta W. (2008). Sex differences in drug addiction: a review of animal and human studies. Womens Health 4, 51–65. 10.2217/17455057.4.1.51 PubMed DOI
Fattore L., Melis M. (2016). Sex differences in impulsive and compulsive behaviors: a focus on drug addiction. Addict. Biol. 21, 1043–1051. 10.1111/adb.12381 PubMed DOI
Fattore L., Melis M., Fadda P., Fratta W. (2014). Sex differences in addictive disorders. Front. Neuroendocrinol. 35, 272–284. 10.1016/j.yfrne.2014.04.003 PubMed DOI
Filip M., Frankowska M., Jastrzebska J., Wydra K., Przegaliński E. (2013). Preclinical studies on comorbidity between depression and psychostimulant addiction. Pharmacol. Rep. 65, 1529–1534. 10.1016/s1734-1140(13)71514-7 PubMed DOI
Fitzgerald B. J., Richardson K., Wesson D. W. (2014). Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers. Front. Behav. Neurosci. 8:81. 10.3389/fnbeh.2014.00081 PubMed DOI PMC
Franceschelli A., Herchick S., Thelen C., Papadopoulou-Daifoti Z., Pitychoutis P. M. (2014). Sex differences in the chronic mild stress model of depression. Behav. Pharmacol. 25, 372–383. 10.1097/fbp.0000000000000062 PubMed DOI
Frankowska M., Jastrzebska J., Nowak E., Bialko M., Przegalinski E., Filip M. (2014). The effects of N-acetylcysteine on cocaine reward and seeking behaviors in a rat model of depression. Behav. Brain Res. 266, 108–118. 10.1016/j.bbr.2014.02.044 PubMed DOI
Gadziola M. A., Wesson D. W. (2016). The neural representation of goal-directed actions and outcomes in the ventral Striatum’s olfactory tubercle. J. Neurosci. 36, 548–560. 10.1523/jneurosci.3328-15.2016 PubMed DOI PMC
Gan J. O., Walton M. E., Phillips P. E. (2010). Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat. Neurosci. 13, 25–27. 10.1038/nn.2460 PubMed DOI PMC
Gonen T., Admon R., Podlipsky I., Hendler T. (2012). From animal model to human brain networking: dynamic causal modeling of motivational systems. J. Neurosci. 32, 7218–7224. 10.1523/jneurosci.6188-11.2012 PubMed DOI PMC
Grecksch G., Becker A. (2015). Alterations of reward mechanisms in bulbectomised rats. Behav. Brain Res. 286, 271–277. 10.1016/j.bbr.2015.03.015 PubMed DOI
Guegan T., Cutando L., Ayuso E., Santini E., Fisone G., Bosch F., et al. . (2013). Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. Eur. Neuropsychopharmacol. 23, 146–159. 10.1016/j.euroneuro.2012.04.004 PubMed DOI
Harkin A., Kelly J. P., Leonard B. E. (2003). A review of the relevance and validity of olfactory bulbectomy as a model of depression. Clin. Neurosci. Res. 3, 253–262. 10.1016/s1566-2772(03)00087-2 DOI
Holmes P. V., Masini C. V., Primeaux S. D., Garrett J. L., Zellner A., Stogner K. S., et al. . (2002). Intravenous self-administration of amphetamine is increased in a rat model of depression. Synapse 46, 4–10. 10.1002/syn.10105 PubMed DOI
Jastrzębska J., Frankowska M., Szumiec Ł., Sadakierska-Chudy A., Haduch A., Smaga I., et al. . (2015). Cocaine self-administration in wistar-kyoto rats: a behavioral and biochemical analysis. Behav. Brain Res. 293, 62–73. 10.1016/j.bbr.2015.06.040 PubMed DOI
Kelly J. P., Leonard B. E. (1996). Effects of chronic desipramine on waiting behaviour for a food reward in olfactory bulbectomized rats. J. Psychopharmacol. 10, 153–156. 10.1177/026988119601000211 PubMed DOI
Kelly J. P., Wrynn A. S., Leonard B. E. (1997). The olfactory bulbectomized rat as a model of depression: an update. Pharmacol. Ther. 74, 299–316. 10.1016/s0163-7258(97)00004-1 PubMed DOI
Kucerova J., Pistovcakova J., Vrskova D., Dusek L., Sulcova A. (2012). The effects of methamphetamine self-administration on behavioural sensitization in the olfactory bulbectomy rat model of depression. Int. J. Neuropsych. 15, 1503–1511. 10.1017/s1461145711001684 PubMed DOI
Larsson K. (1975). Sexual impairment of inexperienced male rats following pre- and postpuberal olfactory bulbectomy. Physiol. Behav. 14, 195–199. 10.1016/0031-9384(75)90165-1 PubMed DOI
Legget K. T., Cornier M.-A., Bessesen D. H., Mohl B., Thomas E. A., Tregellas J. R. (2018). Greater reward-related neuronal response to hedonic foods in women compared with men. Obesity 26, 362–367. 10.1002/oby.22082 PubMed DOI PMC
Leonard B. E. (1984). The olfactory bulbectomized rat as a model of depression. Pol. J. Pharmacol. Pharm. 36, 561–569. PubMed
Lumia A. R., Meisel R. L., Sachs B. D. (1981). Induction of female and male mating patterns in female rats by gonadal steroids: effects of neonatal or adult olfactory bulbectomy. J. Comp. Physiol. Psychol. 95, 497–511. 10.1037/h0077798 PubMed DOI
MacLaren V. V., Best L. A. (2010). Multiple addictive behaviors in young adults: student norms for the shorter PROMIS questionnaire. Addict. Behav. 35, 252–255. 10.1016/j.addbeh.2009.09.023 PubMed DOI
Marcus S. M., Young E. A., Kerber K. B., Kornstein S., Farabaugh A. H., Mitchell J., et al. . (2005). Gender differences in depression: findings from the STAR*D study. J. Affect. Disord. 87, 141–150. 10.1016/j.jad.2004.09.008 PubMed DOI
Meguid M. M., Gleason J. R., Yang Z. J. (1993). Olfactory bulbectomy in rats modulates feeding pattern but not total food intake. Physiol. Behav. 54, 471–475. 10.1016/0031-9384(93)90238-b PubMed DOI
Meguid M. M., Koseki M., Yang Z. J., Gleason J. R., Laviano A. (1997). Acute adaptive changes in food intake pattern following olfactory ablation in rats. Neuroreport 8, 1439–1444. 10.1097/00001756-199704140-00023 PubMed DOI
Micale V., Kucerova J., Sulcova A. (2013). Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 354, 309–330. 10.1007/s00441-013-1692-9 PubMed DOI
Müller C. P. (2017). Animal models of psychoactive drug use and addiction—present problems and future needs for translational approaches. Behav. Brain Res. 352, 109–115. 10.1016/j.bbr.2017.06.028 PubMed DOI
Ng E., Browne C. J., Samsom J. N., Wong A. H. C. (2017). Depression and substance use comorbidity: what we have learned from animal studies. Am. J. Drug Alcohol Abuse 43, 456–474. 10.1080/00952990.2016.1183020 PubMed DOI
Paans N. P. G., Bot M., van Strien T., Brouwer I. A., Visser M., Penninx B. W. J. H. (2018). Eating styles in major depressive disorder: results from a large-scale study. J. Psychiatr. Res. 97, 38–46. 10.1016/j.jpsychires.2017.11.003 PubMed DOI
Pieper D. R., Johnson K. D., Lobocki C. A. (1992). Unilateral but not bilateral olfactory bulbectomy inhibits body weight gain in hamsters. Physiol. Behav. 52, 1151–1154. 10.1016/0031-9384(92)90474-g PubMed DOI
Primeaux S. D., Wilson M. A., Wilson S. P., Guth A. N., Lelutiu N. B., Holmes P. V. (2003). Herpes virus-mediated preproenkephalin gene transfer in the ventral striatum mimics behavioral changes produced by olfactory bulbectomy in rats. Brain Res. 988, 43–55. 10.1016/s0006-8993(03)03337-7 PubMed DOI
Richard J. E., López-Ferreras L., Anderberg R. H., Olandersson K., Skibicka K. P. (2017). Estradiol is a critical regulator of food-reward behavior. Psychoneuroendocrinology 78, 193–202. 10.1016/j.psyneuen.2017.01.014 PubMed DOI
Robinson E. S. J. (2018). Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373:20170036. 10.1098/rstb.2017.0036 PubMed DOI PMC
Romeas T., Morissette M. C., Mnie-Filali O., Pineyro G., Boye S. M. (2009). Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression. Psychopharmacology 205, 293–303. 10.1007/s00213-009-1539-y PubMed DOI
Roth M. E., Cosgrove K. P., Carroll M. E. (2004). Sex differences in the vulnerability to drug abuse: a review of preclinical studies. Neurosci. Biobehav. Rev. 28, 533–546. 10.1016/j.neubiorev.2004.08.001 PubMed DOI
Ruda-Kucerova J., Amchova P., Babinska Z., Dusek L., Micale V., Sulcova A. (2015a). Sex differences in the reinstatement of methamphetamine seeking after forced abstinence in sprague-dawley rats. Front. Psychiatry 6:91. 10.3389/fpsyt.2015.00091 PubMed DOI PMC
Ruda-Kucerova J., Amchova P., Havlickova T., Jerabek P., Babinska Z., Kacer P., et al. . (2015b). Reward related neurotransmitter changes in a model of depression: an in vivo microdialysis study. World J. Biol. Psychiatry 16, 521–535. 10.3109/15622975.2015.1077991 PubMed DOI
Sato A., Nakagawasai O., Tan-No K., Onogi H., Niijima F., Tadano T. (2010). Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice. Behav. Brain Res. 210, 251–256. 10.1016/j.bbr.2010.02.042 PubMed DOI
Seney M. L., Sibille E. (2014). Sex differences in mood disorders: perspectives from humans and rodent models. Biol. Sex Differ. 5:17. 10.1186/s13293-014-0017-3 PubMed DOI PMC
Slattery D. A., Markou A., Cryan J. F. (2007). Evaluation of reward processes in an animal model of depression. Psychopharmacology 190, 555–568. 10.1007/s00213-006-0630-x PubMed DOI
Song C., Leonard B. E. (2005). The olfactory bulbectomised rat as a model of depression. Neurosci. Biobehav. Rev. 29, 627–647. 10.1016/j.neubiorev.2005.03.010 PubMed DOI
Spierling S. R., Kreisler A. D., Williams C. A., Fang S. Y., Pucci S. N., Kines K. T., et al. . (2018). Intermittent, extended access to preferred food leads to escalated food reinforcement and cyclic whole-body metabolism in rats: sex differences and individual vulnerability. Physiol. Behav. 192, 3–16. 10.1016/j.physbeh.2018.04.001 PubMed DOI PMC
Stock H. S., Ford K., Wilson M. A. (2000). Gender and gonadal hormone effects in the olfactory bulbectomy animal model of depression. Pharmacol. Biochem. Behav. 67, 183–191. 10.1016/s0091-3057(00)00318-x PubMed DOI
Stock H. S., Hand G. A., Ford K., Wilson M. A. (2001). Changes in defensive behaviors following olfactory bulbectomy in male and female rats. Brain Res. 903, 242–246. 10.1016/s0006-8993(01)02421-0 PubMed DOI
Thomas J. M., Higgs S., Dourish C. T., Hansen P. C., Harmer C. J., McCabe C. (2015). Satiation attenuates BOLD activity in brain regions involved in reward and increases activity in dorsolateral prefrontal cortex: an fMRI study in healthy volunteers. Am. J. Clin. Nutr. 101, 697–704. 10.3945/ajcn.114.097543 PubMed DOI
Thornton-Jones Z. D., Vickers S. P., Clifton P. G. (2005). The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology 179, 452–460. 10.1007/s00213-004-2047-8 PubMed DOI
Torrens M., Rossi P. (2015). “Mood disorders and addiction,” in Co-occurring Addictive and Psychiatric Disorders. A Practice-Based Handbook From a European Perspective, eds Dom G., Moggi F. (New York, NY: Springer; ), 103–117.
Trezza V., Baarendse P. J. J., Vanderschuren L. J. M. J. (2010). The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol. Sci. 31, 463–469. 10.1016/j.tips.2010.06.008 PubMed DOI PMC
Ulrich-Lai Y. M., Fulton S., Wilson M., Petrovich G., Rinaman L. (2015). Stress exposure, food intake and emotional state. Stress 18, 381–399. 10.3109/10253890.2015.1062981 PubMed DOI PMC
van Riezen H., Leonard B. E. (1990). Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacol. Ther. 47, 21–34. 10.1016/0163-7258(90)90043-2 PubMed DOI
Venniro M., Zhang M., Shaham Y., Caprioli D. (2017). Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology 42, 1126–1135. 10.1038/npp.2016.287 PubMed DOI PMC
Vieyra-Reyes P., Mineur Y. S., Picciotto M. R., Tunez I., Vidaltamayo R., Drucker-Colin R. (2008). Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res. Bull. 77, 13–18. 10.1016/j.brainresbull.2008.05.007 PubMed DOI PMC
Ward S. J., Walker E. A. (2009). Sex and cannabinoid CB1 genotype differentiate palatable food and cocaine self-administration behaviors in mice. Behav. Pharmacol. 20, 605–613. 10.1097/fbp.0b013e328331ba30 PubMed DOI PMC
Wilson C., Nomikos G. G., Collu M., Fibiger H. C. (1995). Dopaminergic correlates of motivated behavior: importance of drive. J. Neurosci. 15, 5169–5178. 10.1523/jneurosci.15-07-05169.1995 PubMed DOI PMC
Zhang Z., Liu Q., Wen P., Zhang J., Rao X., Zhou Z., et al. . (2017). Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. Elife 6:e25423. 10.7554/eLife.25423 PubMed DOI PMC