Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24688470
PubMed Central
PMC3960502
DOI
10.3389/fphar.2014.00044
Knihovny.cz E-zdroje
- Klíčová slova
- WIN55212-2, cannabinoid, depression, dopamine, drug dependence, methamphetamine, olfactory bulbectomy, serotonin,
- Publikační typ
- časopisecké články MeSH
Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.
Zobrazit více v PubMed
Arendt M., Rosenberg R., Fjordback L., Brandholdt J., Foldager L., Sher L., et al. (2007). Testing the self-medication hypothesis of depression and aggression in cannabis-dependent subjects. Psychol. Med. 37, 935–945 10.1017/S0033291706009688 PubMed DOI
Ashton C. H., Moore P. B. (2011). Endocannabinoid system dysfunction in mood and related disorders. Acta Psychiatr. Scand. 124, 250–261 10.1111/j.1600-0447.2011.01687.x PubMed DOI
Baker A. L., Hides L., Lubman D. I. (2010). Treatment of cannabis use among people with psychotic or depressive disorders: a systematic review. J. Clin. Psychiatry 71, 247–254 10.4088/JCP.09r05119gry PubMed DOI
Barnes N. M., Sharp T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152 10.1016/S0028-3908(99)00010-6 PubMed DOI
Becker J. B., Perry A. N., Westenbroek C. (2012). Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biol. Sex. Differ. 3:14 10.1186/2042-6410-3-14 PubMed DOI PMC
Beyer C. E., Dwyer J. M., Piesla M. J., Platt B. J., Shen R., Rahman Z., et al. (2010). Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol. Dis. 39, 148–155 10.1016/j.nbd.2010.03.02 PubMed DOI
Cai X., Kallarackal A. J., Kvarta M. D., Goluskin S., Gaylor K., Bailey A. M., et al. (2013). Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat. Neurosci. 16, 464–472 10.1038/nn.3355 PubMed DOI PMC
Calcagnetti D. J., Quatrella L. A., Schechter M. D. (1996). Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol. Behav. 59, 597–604 10.1016/0031-9384(95)02119-1 PubMed DOI
Castelli M. P., Fadda P., Casu A., Spano M. S., Casti A., Fratta W., et al. (2013). Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones. Curr. Pharm. Des. 19, 1–14 10.2174/13816128113199990430 PubMed DOI
Chambers R. A., Sheehan T., Taylor J. R. (2004). Locomotor sensitization to cocaine in rats with olfactory bulbectomy. Synapse 52, 167–175 10.1002/syn.20017 PubMed DOI
Cheer J. F., Wassum K. M., Heien M. L., Phillips P. E., Wightman R. M. (2004). Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J. Neurosci. 24, 4393–4400 10.1523/JNEUROSCI.0529-04.2004 PubMed DOI PMC
Chiang C. Y., Yeh K. Y., Lin S. F., Hsuchou H., Tai M. Y., Ho Y. J., et al. (2008). Effects of alcohol on the mouse-killing behavior of olfactory bulbectomized rats. Chin. J. Physiol. 51, 408–413 PubMed
Czachowski C. L. (2005). Manipulations of serotonin function in the nucleus accumbens core produce differential effects on ethanol and sucrose seeking and intake. Alcohol. Clin. Exp. Res. 29, 1146–1155 10.1097/01.ALC.0000171944.50381.86 PubMed DOI
De Boer S. F., Koolhaas J. M. (2005). 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur. J. Pharmacol. 526, 125–139 10.1016/j.ejphar.2005.09.065 PubMed DOI
Degenhardt L., Hall W., Lynskey M. (2003). Exploring the association between cannabis use and depression. Addiction 98, 1493–1504 10.1046/j.1360-0443.2003.00437.x PubMed DOI
Deiana S., Fattore L., Spano M. S., Cossu G., Porcu E., Fadda P., et al. (2007). Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology 52, 646–654 10.1016/j.neuropharm.2006.09.007 PubMed DOI
Fadda P., Scherma M., Spano M. S., Salis P., Melis V., Fattore L., et al. (2006). Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport 17, 1629–1632 10.1097/01.wnr.0000236853.40221.8e PubMed DOI
Fattore L., Cossu G., Martellotta C. M., Fratta W. (2001). Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology (Berl.) 156, 410–416 10.1016/j.euroneuro.2009.09.004. PubMed DOI
Fattore L., Spano M. S., Altea S., Angius F., Fadda P., Fratta W. (2007). Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br. J. Pharmacol. 152, 795–804 . 10.1038/sj.bjp.0707465 PubMed DOI PMC
Fletcher P. J., Korth K. M. (1999). Activation of 5-HT1B receptors in the nucleus accumbens reduces amphetamine-induced enhancement of responding for conditioned reward. Psychopharmacology (Berl.) 142, 165–174 10.1007/s002130050876 PubMed DOI
Gardner E. L., Lowinson J. H. (1991). Marijuana's interaction with brain reward systems: update 1991. Pharmacol. Biochem. Behav. 40, 571–580 10.1016/0091-3057(91)90365-9 PubMed DOI
Grant K. A., Colombo G., Gatto G. J. (1997). Characterization of the ethanol-like discriminative stimulus effects of 5-HT receptor agonists as a function of ethanol training dose. Psychopharmacology (Berl.) 133, 133–141 10.1007/s002130050383 PubMed DOI
Gruber A. J., Pope H. G., Jr., Brown M. E. (1996). Do patients use marijuana as an antidepressant? Depression 4, 77–80 10.1002/(SICI)1522-7162(1996)4:2<77::AID-DEPR7>3.0.CO;2-C PubMed DOI
Hall D. H., Queener J. E. (2007). Self-medication hypothesis of substance use: testing Khantzian's updated theory. J. Psychoactive Drugs 39, 151–158 10.1080/02791072.2007.10399873 PubMed DOI
Harrison A. A., Parsons L. H., Koob G. F., Markou A. (1999). RU 24969, a 5-HT1A/1B agonist, elevates brain stimulation reward thresholds: an effect reversed by GR 127935, a 5-HT1B/1D antagonist. Psychopharmacology (Berl.) 141, 242–250 10.1007/s002130050831 PubMed DOI
Hayes D. J., Graham D. A., Greenshaw A. J. (2009). Effects of systemic 5-HT(1B) receptor compounds on ventral tegmental area intracranial self-stimulation thresholds in rats. Eur. J. Pharmacol. 604, 74–78 10.1016/j.ejphar.2008.12.023 PubMed DOI
Hill M. N., Gorzalka B. B. (2005). Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav. Pharmacol. 16, 333–352 10.1097/00008877-200509000-00006 PubMed DOI
Holma I. A., Holma K. M., Melartin T. K., Ketokivi M., Isometsa E. T. (2013). Depression and smoking: a 5-year prospective study of patients with major depressive disorder. Depress. Anxiety 30, 580–588 10.1002/da.22108 PubMed DOI
Holmes P. V., Masini C. V., Primeaux S. D., Garrett J. L., Zellner A., Stogner K. S., et al. (2002). Intravenous self-administration of amphetamine is increased in a rat model of depression. Synapse 46, 4–10 10.1002/syn.10105 PubMed DOI
Horowitz J. M., Kristal M. B., Torres G. (1997). Differential behavioral responses to cocaethylene of Long-Evans and Sprague-Dawley rats: role of serotonin. Synapse 26, 11–21 10.1002/(SICI)1098-2396(199705)26:1<11::AID-SYN2>3.0.CO;2-H PubMed DOI
Horwood L. J., Fergusson D. M., Coffey C., Patton G. C., Tait R., Smart D., et al. (2012). Cannabis and depression: an integrative data analysis of four Australasian cohorts. Drug Alcohol Depend. 126, 369–378 10.1016/j.drugalcdep.2012.06.002 PubMed DOI
Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., et al. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46, 157–203 PubMed
Jentsch J. D., Taylor J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl.) 146, 373–390 10.1007/PL00005483 PubMed DOI
Justinova Z., Tanda G., Redhi G. H., Goldberg S. R. (2003). Self-administration of delta9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology (Berl.) 169, 135–140 10.1007/s00213-003-1484-0 PubMed DOI
Kamei J., Hirose N., Oka T., Miyata S., Saitoh A., Yamada M. (2007). Effects of methylphenidate on the hyperemotional behavior in olfactory bulbectomized mice by using the hole-board test. J. Pharmacol. Sci. 103, 175–180 10.1254/jphs.FP0061021 PubMed DOI
Kelly J. P., Wrynn A. S., Leonard B. E. (1997). The olfactory bulbectomized rat as a model of depression: an update. Pharmacol. Ther. 74, 299–316 10.1016/S0163-7258(97)00004-1 PubMed DOI
Khantzian E. J. (1985). The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am. J. Psychiatry 142, 1259–1264 PubMed
Kucerova J., Pistovcakova J., Vrskova D., Dusek L., Sulcova A. (2012). The effects of methamphetamine self-administration on behavioural sensitization in the olfactory bulbectomy rat model of depression. Int. J. Neuropsychopharmacol. 15, 1503–1511 10.1017/S1461145711001684 PubMed DOI
Kucerova J., Vrskova D., Sulcova A. (2009). Impact of repeated methamphetamine pretreatment on intravenous self-administration of the drug in males and estrogenized or non-estrogenized ovariectomized female rats. Neuro. Endocrinol. Lett. 30, 663–670 PubMed
Langas A. M., Malt U. F., Opjordsmoen S. (2010). Comorbid mental disorders in substance users from a single catchment area - a clinical study. BMC Psychiatry 11, 11–25 10.1186/1471-244X-11-25 PubMed DOI PMC
Lappalainen J., Long J. C., Eggert M., Ozaki N., Robin R. W., Brown G. L., et al. (1998). Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch. Gen. Psychiatry 55, 989–994 10.1001/archpsyc.55.11.989 PubMed DOI
Leonard B. E., Tuite M. (1981). Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat. Int. Rev. Neurobiol. 22, 251–286 10.1016/S0074-7742(08)60295-0 PubMed DOI
Lev-Ran S., Roerecke M., Le Foll B., George T. P., McKenzie K., Rehm J. (2013). The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychol. Med. 44, 1–14 10.1017/S0033291713001438 PubMed DOI
Maciag D., Coppinger D., Paul I. A. (2006). Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development. Brain Res. 1125, 171–175 10.1016/j.brainres.2006.10.009 PubMed DOI PMC
Markou A., Kosten T. R., Koob G. F. (1998). Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18, 135–174 10.1016/S0893-133X(97)00113-9 PubMed DOI
Martellotta M. C., Cossu G., Fattore L., Gessa G. L., Fratta W. (1998). Self-administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naive mice. Neuroscience 85, 327–330 10.1016/S0306-4522(98)00052-9 PubMed DOI
Masini C. V., Holmes P. V., Freeman K. G., Maki A. C., Edwards G. L. (2004). Dopamine overflow is increased in olfactory bulbectomized rats: an in vivo microdialysis study. Physiol. Behav. 81, 111–119 10.1016/j.physbeh.2004.01.003 PubMed DOI
Mato S., Aso E., Castro E., Martin M., Valverde O., Maldonado R., et al. (2007). CB1 knockout mice display impaired functionality of 5-HT1A and 5-HT2A/C receptors. J. Neurochem. 103, 2111–2120 10.1111/j.1471-4159.2007.04961.x PubMed DOI
Maurel S., De Vry J., Schreiber R. (1999). 5-HT receptor ligands differentially affect operant oral self-administration of ethanol in the rat. Eur. J. Pharmacol. 370, 217–223 10.1016/S0014-2999(99)00125-9 PubMed DOI
Melis M., Pistis M. (2007). Endocannabinoid signaling in midbrain dopamine neurons: more than physiology? Curr. Neuropharmacol. 5, 268–277 10.2174/157015907782793612 PubMed DOI PMC
Micale V., Di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013a). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37 10.1016/j.pharmthera.2012.12.002 PubMed DOI
Micale V., Kucerova J., Sulcova A. (2013b). Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 354, 309–330 10.1007/s00441-013-1692-9 PubMed DOI
Miryala C. S., Hiegel C., Uphouse L. (2013). Sprague-Dawley and Fischer female rats differ in acute effects of fluoxetine on sexual behavior. J. Sex. Med. 10, 350–361 10.1111/j.1743-6109.2012.02981.x PubMed DOI PMC
Miszkiel J., Adamczyk P., Filip M., Przegalinski E. (2012). The effect of serotonin 5HT1B receptor ligands on amphetamine self-administration in rats. Eur. J. Pharmacol. 677, 111–115 10.1016/j.ejphar.2011.12.033 PubMed DOI
Moret C., Briley M. (2000). The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur. J. Pharmacol. 404, 1–12 10.1016/S0014-2999(00)00581-1 PubMed DOI
Murrough J. W., Henry S., Hu J., Gallezot J. D., Planeta-Wilson B., Neumaier J. F., et al. (2011). Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology (Berl.) 213, 547–553 10.1007/s00213-010-1881-0 PubMed DOI PMC
Muscat R., Willner P. (1989). Effects of dopamine receptor antagonists on sucrose consumption and preference. Psychopharmacology (Berl.) 99, 98–102 10.1007/BF00634461 PubMed DOI
Neale R. F., Fallon S. L., Boyar W. C., Wasley J. W., Martin L. L., Stone G. A., et al. (1987). Biochemical and pharmacological characterization of CGS 12066B, a selective serotonin-1B agonist. Eur. J. Pharmacol. 136, 1–9 10.1016/0014-2999(87)90772-2 PubMed
Neisewander J. L., Cheung T. H., Pentkowski N. S. (2013). Dopamine D3 and 5-HT receptor dysregulation as a result of psychostimulant intake and forced abstinence: implications for medications development. Neuropharmacology 76:18 10.1016/j.neuropharm.2013.08.014 PubMed DOI PMC
Ogborne A. C., Smart R. G., Weber T., Birchmore-Timney C. (2000). Who is using cannabis as a medicine and why: an exploratory study. J. Psychoactive Drugs 32, 435–443 10.1080/02791072.2000.10400245 PubMed DOI
Oleson E. B., Cheer J. F. (2012). A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb. Perspect. Med. 2:a012229 10.1101/cshperspect.a012229 Available online at: http://perspectivesinmedicine.org/content/2/8.toc#PERSPECTIVES PubMed DOI PMC
Otten R., Engels R. C. (2013). Testing bidirectional effects between cannabis use and depressive symptoms: moderation by the serotonin transporter gene. Addict. Biol. 18, 826–835 10.1111/j.1369-1600.2011.00380.x PubMed DOI
Parsons L. H., Weiss F., Koob G. F. (1996). Serotonin1b receptor stimulation enhances dopamine-mediated reinforcement. Psychopharmacology (Berl.) 128, 150–160 10.1007/s002130050120 PubMed DOI
Paxinos G., Watson C. (1998). The Rat Brain in Stereotaxic Coordinates. San Diego, CA: Academic Press
Pentkowski N. S., Cheung T. H., Toy W. A., Adams M. D., Neumaier J. F., Neisewander J. L. (2012). Protracted withdrawal from cocaine self-administration flips the switch on 5-HT(1B) receptor modulation of cocaine abuse-related behaviors. Biol. Psychiatry 72, 396–404 10.1016/j.biopsych.2012.03.024 PubMed DOI PMC
Polissidis A., Galanopoulos A., Naxakis G., Papahatjis D., Papadopoulou-Daifoti Z., Antoniou K. (2013). The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int. J. Neuropsychopharmacol. 16, 393–403 10.1017/S1461145712000156 PubMed DOI
Prins J., Olivier B., Korte S. M. (2011). Triple reuptake inhibitors for treating subtypes of major depressive disorder: the monoamine hypothesis revisited. Expert Opin. Investig. Drugs 20, 1107–1130 10.1517/13543784.2011.594039 PubMed DOI
Pytliak M., Vargova V., Mechirova V., Felsoci M. (2011). Serotonin receptors - from molecular biology to clinical applications. Physiol. Res. 60, 15–25 PubMed
Rodriguez-Gaztelumendi A., Rojo M. L., Pazos A., Diaz A. (2009). Altered CB receptor-signaling in prefrontal cortex from an animal model of depression is reversed by chronic fluoxetine. J. Neurochem. 108, 1423–1433 10.1111/j.1471-4159.2009.05898.x PubMed DOI
Romeas T., Morissette M. C., Mnie-Filali O., Pineyro G., Boye S. M. (2009). Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression. Psychopharmacology (Berl.) 205, 293–303 10.1007/s00213-009-1539-y PubMed DOI
Rotenberg V. S. (1994). The revised monoamine hypothesis: mechanism of antidepressant treatment in the context of behavior. Integr. Physiol. Behav. Sci. 29, 182–188 10.1007/BF02691013 PubMed DOI
Sato A., Nakagawasai O., Tan-No K., Onogi H., Niijima F., Tadano T. (2010). Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice. Behav. Brain Res. 215, 141–145 10.1016/j.bbr.2010.07.012 PubMed DOI
Song C., Leonard B. E. (2005). The olfactory bulbectomised rat as a model of depression. Neurosci. Biobehav. Rev. 29, 627–647 10.1016/j.neubiorev.2005.03.01 PubMed DOI
Spano M. S., Fadda P., Fratta W., Fattore L. (2010). Cannabinoid-opioid interactions in drug discrimination and self-administration: effect of maternal, postnatal, adolescent and adult exposure to the drugs. Curr. Drug Targets 11, 450–461 10.2174/138945010790980295 PubMed DOI
Tanda G., Pontieri F. E., Di Chiara G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276, 2048–2050 10.1126/science.276.5321.2048 PubMed DOI
Tatarczynska E., Klodzinska A., Stachowicz K., Chojnacka-Wojcik E. (2004). Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav. Pharmacol. 15, 523–534 10.1097/00008877-200412000-00001 PubMed DOI
Testa A., Giannuzzi R., Sollazzo F., Petrongolo L., Bernardini L., Dain S. (2013). Psychiatric emergencies (part II): psychiatric disorders coexisting with organic diseases. Eur. Rev. Med. Pharmacol. Sci. 17(Suppl. 1), 65–85 PubMed
Tomkins D. M., O'Neill M. F. (2000). Effect of 5-HT(1B) receptor ligands on self-administration of ethanol in an operant procedure in rats. Pharmacol. Biochem. Behav. 66, 129–136 10.1016/S0091-3057(00)00232-X PubMed DOI
Uphouse L., Maswood S., Jackson A., Brown K., Prullage J., Myers T., et al. (2002). Strain differences in the response to the 5-HT1A receptor agonist, 8-OH-DPAT. Pharmacol. Biochem. Behav. 72, 533–542 10.1016/S0091-3057(02)00714-1 PubMed DOI
Van Riezen H., Leonard B. E. (1990). Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacol. Ther. 47, 21–34 10.1016/0163-7258(90)90043-2 PubMed DOI
Vieyra-Reyes P., Mineur Y. S., Picciotto M. R., Tunez I., Vidaltamayo R., Drucker-Colin R. (2008). Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res. Bull. 77, 13–18 10.1016/j.brainresbull.2008.05.007 PubMed DOI PMC
Vinklerova J., Novakova J., Sulcova A. (2002). Inhibition of methamphetamine self-administration in rats by cannabinoid receptor antagonist AM 251. J. Psychopharmacol. 16, 139–143 10.1177/026988110201600204 PubMed DOI
Wohl M., Ades J. (2009). [Depression and addictions: links and therapeutic sequence]. Rev. Prat. 59, 484–487 PubMed
The effect of CNQX on self-administration: present in nicotine, absent in methamphetamine model
Both ketamine and NBQX attenuate alcohol drinking in male Wistar rats