The effect of CNQX on self-administration: present in nicotine, absent in methamphetamine model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38249125
PubMed Central
PMC10796660
DOI
10.3389/fnbeh.2023.1305412
Knihovny.cz E-zdroje
- Klíčová slova
- AMPA/kainate receptor, CNQX, methamphetamine, nicotine, relapse, self-administration,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Addiction is a chronic disease with limited pharmacological options for intervention. Focusing on reducing glutamate levels in the brain seems to be a promising strategy in addiction treatment research. Our research aimed to evaluate the effects of CNQX, an antagonist that targets AMPA and kainate glutamatergic receptors while also exhibiting affinity for the NMDA receptor, especially by modulating its glycine site. We conducted this assessment on the self-administration of nicotine and methamphetamine via intravenous (IV) administration in rats. METHODS: An operant IV self-administration model was used in male Wistar rats. When animals maintained a stable intake of nicotine or methamphetamine, we administered a single injection of CNQX (in the dose of 3 or 6 mg/kg IV) to evaluate its effect on drug intake. Subsequently, the rats were forced to abstain by staying in their home cages for 2 weeks. The period of abstinence was followed by a context-induced relapse-like session before which animals were pretreated with the injection of CNQX (3 or 6 mg/kg IV) to evaluate its effect on drug seeking. RESULTS: CNQX significantly reduced nicotine intake during the maintenance phase, but no effect was revealed on nicotine seeking after forced abstinence. CNQX did not affect methamphetamine taking or seeking. CONCLUSION: The effect of reducing nicotine taking but not seeking could be explained by different involvement of glutamatergic receptors in various stages of nicotine dependence.
Zobrazit více v PubMed
Akiyama K., Ujike H., Sakai K., Shimizu Y., Kodama M., Kuroda S. (1998). Effect of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline on methamphetamine- and cocaine-induced behavioral sensitization. Pharmacol. Biochem. Behav. 61, 419–426. doi: 10.1016/s0091-3057(98)00121-x PubMed DOI
Amchova P., Kucerova J., Giugliano V., Babinska Z., Zanda M. T., Scherma M., et al. . (2014). Enhanced self-administration of the CB1 receptor agonist WIN55, 212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front. Pharmacol. 5:44. doi: 10.3389/fphar.2014.00044 PubMed DOI PMC
Babinska Z., Ruda-Kucerova J. (2017). Differential characteristics of ketamine self-administration in the olfactory bulbectomy model of depression in male rats. Exp. Clin. Psychopharmacol. 25:84. doi: 10.1037/pha0000106 PubMed DOI
Babinska Z., Ruda-Kucerova J., Amchova P., Merhautova J., Dusek L., Sulcova A. (2016). Olfactory bulbectomy increases reinstatement of methamphetamine seeking after a forced abstinence in rats. Behav. Brain Res. SreeTestContent1 297, 20–27. doi: 10.1016/j.bbr.2015.09.035 PubMed DOI
Bäckström P., Hyytiä P. (2003). Attenuation of cocaine-seeking behaviour by the AMPA/kainate receptor antagonist CNQX in rats. Psychopharmacology 166, 69–76. doi: 10.1007/s00213-002-1312-y PubMed DOI
Bäckström P., Hyytiä P. (2004). Ionotropic glutamate receptor antagonists modulate Cue-induced reinstatement of ethanol-seeking behavior. Alcohol. Clin. Exp. Res. 28, 558–565. doi: 10.1097/01.ALC.0000122101.13164.21 PubMed DOI
Bäckström P., Hyytiä P. (2006). Ionotropic and metabotropic glutamate receptor antagonism attenuates Cue-induced cocaine seeking. Neuropsychopharmacology 31, 778–786. doi: 10.1038/sj.npp.1300845 PubMed DOI
Bäckström P., Hyytiä P. (2007). Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology 192, 571–580. doi: 10.1007/s00213-007-0753-8 PubMed DOI
Banasikowski T. J., MacLeod L. S., Beninger R. J. (2012). Comparison of nafadotride, CNQX, and haloperidol on acquisition versus expression of amphetamine-conditioned place preference in rats. Behav. Pharmacol. 23, 89–97. doi: 10.1097/FBP.0b013e32834ecb32 PubMed DOI
Bigge C. F., Nikam S. S. (1997). AMPA receptor agonists, antagonists and modulators: their potential for clinical utility. Expert Opin. Ther. Pat. 7, 1099–1114. doi: 10.1517/13543776.7.10.1099 DOI
Boudreau A. C. (2005). Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus Accumbens. J. Neurosci. 25, 9144–9151. doi: 10.1523/JNEUROSCI.2252-05.2005 PubMed DOI PMC
Boutros N., Semenova S., Markou A. (2016). Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats. Addict. Biol. 21, 826–834. doi: 10.1111/adb.12263 PubMed DOI PMC
Chan B., Freeman M., Kondo K., Ayers C., Montgomery J., Paynter R., et al. . (2019). Pharmacotherapy for methamphetamine/amphetamine use disorder—a systematic review and meta-analysis. Addiction 114, 2122–2136. doi: 10.1111/add.14755 PubMed DOI
Ciano P. D., Everitt B. J. (2004). Direct interactions between the basolateral amygdala and nucleus Accumbens Core underlie cocaine-seeking behavior by rats. J. Neurosci. 24, 7167–7173. doi: 10.1523/JNEUROSCI.1581-04.2004 PubMed DOI PMC
Cooper S., Robison A. J., Mazei-Robison M. S. (2017). Reward circuitry in addiction. Neurotherapeutics 14, 687–697. doi: 10.1007/s13311-017-0525-z PubMed DOI PMC
Cornish J. L., Duffy P., Kalivas P. W. (1999). A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93, 1359–1367. doi: 10.1016/s0306-4522(99)00214-6 PubMed DOI
Cornish J. L., Kalivas P. W. (2000). Glutamate transmission in the nucleus Accumbens mediates relapse in cocaine addiction. J. Neurosci. 20:RC89–RC89. doi: 10.1523/JNEUROSCI.20-15-j0006.2000 PubMed DOI PMC
Courtney K. E., Ray L. A. (2014). Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend. 143, 11–21. doi: 10.1016/j.drugalcdep.2014.08.003 PubMed DOI PMC
Cruickshank C. C., Dyer K. R. (2009). A review of the clinical pharmacology of methamphetamine. Addiction 104, 1085–1099. doi: 10.1111/j.1360-0443.2009.02564.x PubMed DOI
Cruz F. C., Marin M. T., Planeta C. S. (2008). The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens. Neuroscience 151, 313–319. doi: 10.1016/j.neuroscience.2007.10.019 PubMed DOI
Cwalina S. N., McConnell R., Benowitz N. L., Barrington-Trimis J. L. (2021). Tobacco-free nicotine — new name, same scheme? N. Engl. J. Med. 385, 2406–2408. doi: 10.1056/NEJMp2111159 PubMed DOI PMC
Dalia A., Wallace L. J. (1995). Amphetamine induction of c-fos in the nucleus accumbens is not inhibited by glutamate antagonists. Brain Res. 694, 299–307. doi: 10.1016/0006-8993(95)00794-Q PubMed DOI
Darke S., Darke S., Kaye S., Darke S., Kaye S., McKetin R., et al. . (2008). Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev. 27, 253–262. doi: 10.1080/09595230801923702 PubMed DOI
Davies J. A. (2007). “CNQX” in xPharm: The comprehensive pharmacology reference. eds. Enna S. J., Bylund D. B. (New York: Elsevier; ), 1–3.
Di Chiara G., Imperato A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. U. S. A. 85, 5274–5278. doi: 10.1073/pnas.85.14.5274 PubMed DOI PMC
Di Ciano P., Everitt B. J. (2001). Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus Accumbens Core and Shell on cocaine-seeking behavior. Neuropsychopharmacology 25, 341–360. doi: 10.1016/S0893-133X(01)00235-4 PubMed DOI
Dinardo P., Rome E. S. (2019). Vaping: the new wave of nicotine addiction. Cleve. Clin. J. Med. 86, 789–798. doi: 10.3949/ccjm.86a.19118 PubMed DOI
Doyle S. E., Ramôa C., Garber G., Newman J., Toor Z., Lynch W. J. (2014). A shift in the role of glutamatergic signaling in the nucleus Accumbens Core with the development of an addicted phenotype. Biol. Psychiatry 76, 810–815. doi: 10.1016/j.biopsych.2014.02.005 PubMed DOI PMC
Dudić A., Reiner A. (2019). Quinoxalinedione deprotonation is important for glutamate receptor binding. Biol. Chem. 400, 927–938. doi: 10.1515/hsz-2018-0464 PubMed DOI
Fattore L., Spano M. S., Cossu G., Scherma M., Fratta W., Fadda P. (2009). Baclofen prevents drug-induced reinstatement of extinguished nicotine-seeking behaviour and nicotine place preference in rodents. Eur. Neuropsychopharmacol. 19, 487–498. doi: 10.1016/j.euroneuro.2009.01.007 PubMed DOI
Ferrario C. R., Li X., Wolf M. E. (2011). Effects of acute cocaine or dopamine receptor agonists on AMPA receptor distribution in the rat nucleus accumbens. Synapse 65, 54–63. doi: 10.1002/syn.20823 PubMed DOI PMC
Fischer K. D., Knackstedt L. A., Rosenberg P. A. (2021). Glutamate homeostasis and dopamine signaling: implications for psychostimulant addiction behavior. Neurochem. Int. 144:104896. doi: 10.1016/j.neuint.2020.104896 PubMed DOI PMC
Fouyssac M., Belin D. (2019). Beyond drug-induced alteration of glutamate homeostasis, astrocytes may contribute to dopamine-dependent intrastriatal functional shifts that underlie the development of drug addiction: a working hypothesis. Eur. J. Neurosci. 50, 3014–3027. doi: 10.1111/ejn.14416 PubMed DOI PMC
Funke J. R., Hwang E.-K., Wunsch A. M., Baker R., Engeln K. A., Murray C. H., et al. . (2023). Persistent neuroadaptations in the nucleus Accumbens Core accompany incubation of methamphetamine craving in male and female rats. eNeuro 10. doi: 10.1523/ENEURO.0480-22.2023 PubMed DOI PMC
Gass J. T., Olive M. F. (2008). Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 75, 218–265. doi: 10.1016/j.bcp.2007.06.039 PubMed DOI PMC
Gatch M. B., Flores E., Forster M. J. (2008). Nicotine and methamphetamine share discriminative stimulus effects. Drug Alcohol Depend. 93, 63–71. doi: 10.1016/j.drugalcdep.2007.08.020 PubMed DOI PMC
Grobler S. R., Chikte U., Westraat J. (2011). The pH levels of different methamphetamine drug samples on the street market in Cape Town. ISRN Dent 2011:974768. doi: 10.5402/2011/974768 PubMed DOI PMC
Han B., Compton W. M., Jones C. M., Einstein E. B., Volkow N. D. (2021). Methamphetamine use, methamphetamine use disorder, and associated overdose deaths among US adults. JAMA Psychiatry 78, 1329–1342. doi: 10.1001/jamapsychiatry.2021.2588 PubMed DOI PMC
Jenssen B. P., Wilson K. M. (2019). What is new in electronic-cigarettes research? Curr. Opin. Pediatr. 31:262. doi: 10.1097/MOP.0000000000000741 PubMed DOI PMC
Kalivas P. W. (2009). The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561–572. doi: 10.1038/nrn2515 PubMed DOI
Kallupi M., Xue S., Zhou B., Janda K. D., George O. (2018). An enzymatic approach reverses nicotine dependence, decreases compulsive-like intake, and prevents relapse. Sci. Adv. 4:eaat4751. doi: 10.1126/sciadv.aat4751 PubMed DOI PMC
Kenny P. J., Chartoff E., Roberto M., Carlezon W. A., Markou A. (2009). NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine Self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 34, 266–281. doi: 10.1038/npp.2008.58 PubMed DOI PMC
Kosowski A. R., Cebers G., Cebere A., Swanhagen A.-C., Liljequist S. (2004). Nicotine-induced dopamine release in the nucleus accumbens is inhibited by the novel AMPA antagonist ZK200775 and the NMDA antagonist CGP39551. Psychopharmacology 175, 114–123. doi: 10.1007/s00213-004-1797-7 PubMed DOI
Kruzich P. J., Xi J. (2006). Different patterns of pharmacological reinstatement of cocaine-seeking behavior between Fischer 344 and Lewis rats. Psychopharmacology 187, 22–29. doi: 10.1007/s00213-005-0264-4 PubMed DOI
Layer R. T., Uretsky N. J., Wallace L. J. (1993). Effects of the AMPA/kainate receptor antagonist DNQX in the nucleus accumbens on drug-induced conditioned place preference. Brain Res. 617, 267–273. doi: 10.1016/0006-8993(93)91094-9 PubMed DOI
Lee K., Goodman L., Fourie C., Schenk S., Leitch B., Montgomery J. M. (2016). “Chapter six - AMPA receptors as therapeutic targets for neurological disorders” in Advances in protein chemistry and structural biology, ion channels as therapeutic targets, part. ed. Donev R. (Academic Press; ), 203–261. PubMed
Lester R., Quarum M., Parker J., Weber E., Jahr C. E. (1989). Interaction of 6-cyano-7-nitroquinoxaline-2,3-dione with the N-methyl-D-aspartate receptor-associated glycine binding site. Mol. Pharmacol. 35, 565–570. PubMed
Lewis D., Kenneally M., van denHeuvel C., Byard R. W. (2021). Methamphetamine deaths: changing trends and diagnostic issues. Med. Sci. Law 61, 130–137. doi: 10.1177/0025802420986707 PubMed DOI
Li Y., Vartanian A. J., White F. J., Xue C.-J., Wolf M. E. (1997). Effects of the AMPA receptor antagonist NBQX on the development and expression of behavioral sensitization to cocaine and amphetamine. Psychopharmacology 134, 266–276. doi: 10.1007/s002130050449 PubMed DOI
Lynch W. J., Bakhti-Suroosh A., Abel J. M., Davis C. (2021). Shifts in the neurobiological mechanisms motivating cocaine use with the development of an addiction-like phenotype in male rats. Psychopharmacology 238, 811–823. doi: 10.1007/s00213-020-05732-4 PubMed DOI PMC
Mead A. N., Stephens D. N. (1998). AMPA-receptors are involved in the expression of amphetamine-induced behavioural sensitisation, but not in the expression of amphetamine-induced conditioned activity in mice. Neuropharmacology 37, 1131–1138. doi: 10.1016/S0028-3908(98)00101-4 PubMed DOI
Mead A. N., Stephens D. N. (1999). CNQX but not NBQX prevents expression of amphetamine-induced place preference conditioning: a role for the Glycine site of the NMDA receptor, but not AMPA receptors. J. Pharmacol. Exp. Ther. 290, 9–15. PubMed
Miyatake M., Narita M., Shibasaki M., Nakamura A., Suzuki T. (2005). Glutamatergic neurotransmission and protein kinase C play a role in neuron–glia communication during the development of methamphetamine-induced psychological dependence. Eur. J. Neurosci. 22, 1476–1488. doi: 10.1111/j.1460-9568.2005.04325.x PubMed DOI
Moretti J., Poh E. Z., Rodger J. (2020). rTMS-induced changes in glutamatergic and dopaminergic systems: Relevance to cocaine and methamphetamine use disorders. Front. Neurosci.:14: 137. doi: 10.3389/fnins.2020.00137 PubMed DOI PMC
Murray C. H., Loweth J. A., Milovanovic M., Stefanik M. T., Caccamise A. J., Dolubizno H., et al. . (2019). AMPA receptor and metabotropic glutamate receptor 1 adaptations in the nucleus accumbens core during incubation of methamphetamine craving. Neuropsychopharmacology 44, 1534–1541. doi: 10.1038/s41386-019-0425-5 PubMed DOI PMC
Park W.-K., Bari A. A., Jey A. R., Anderson S. M., Spealman R. D., Rowlett J. K., et al. . (2002). Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus Accumbens. J. Neurosci. 22, 2916–2925. doi: 10.1523/JNEUROSCI.22-07-02916.2002 PubMed DOI PMC
Picciotto M. R., Kenny P. J. (2021). Mechanisms of nicotine addiction. Cold Spring Harb. Perspect. Med. 11:a039610. doi: 10.1101/cshperspect.a039610 PubMed DOI PMC
Polosa R., Benowitz N. L. (2011). Treatment of nicotine addiction: present therapeutic options and pipeline developments. Trends Pharmacol. Sci. 32, 281–289. doi: 10.1016/j.tips.2010.12.008 PubMed DOI PMC
Prochaska J. J., Benowitz N. L. (2019). Current advances in research in treatment and recovery: nicotine addiction. Sci. Adv. 5:eaay9763. doi: 10.1126/sciadv.aay9763 PubMed DOI PMC
Pushparaj A., Kim A. S., Musiol M., Trigo J. M., Le Foll B. (2015). Involvement of the rostral agranular insular cortex in nicotine self-administration in rats. Behav. Brain Res. 290, 77–83. doi: 10.1016/j.bbr.2015.04.039 PubMed DOI
Ruda-Kucerova J., Amchova P., Siska F., Tizabi Y. (2021). NBQX attenuates relapse of nicotine seeking but not nicotine and methamphetamine self-administration in rats. World J. Biol. Psychiatry 22, 1–23. doi: 10.1080/15622975.2021.1907714 PubMed DOI
Ruda-Kucerova J., Amchova P., Babinska Z., Dusek L., Micale V., Sulcova A. (2015a). Sex differences in the reinstatement of methamphetamine seeking after forced abstinence in Sprague-Dawley rats. Front. Psych. 6:91. doi: 10.3389/fpsyt.2015.00091 PubMed DOI PMC
Ruda-Kucerova J., Amchova P., Havlickova T., Jerabek P., Babinska Z., Kacer P., et al. . (2015b). Reward related neurotransmitter changes in a model of depression: an in vivo microdialysis study. World J. Biol. Psychiatry 16, 521–535. doi: 10.3109/15622975.2015.1077991 PubMed DOI
Ruda-Kucerova J., Babinska Z., Amchova P., Stark T., Drago F., Sulcova A., et al. . (2017). Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats. World J. Biol. Psychiatry 18, 129–142. doi: 10.1080/15622975.2016.1190032 PubMed DOI
Scherma M., Panlilio L. V., Fadda P., Fattore L., Gamaleddin I., Foll B. L., et al. . (2008). Inhibition of anandamide hydrolysis by Cyclohexyl Carbamic acid 3′-Carbamoyl-3-yl Ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J. Pharmacol. Exp. Ther. 327, 482–490. doi: 10.1124/jpet.108.142224 PubMed DOI PMC
Scheyer A. F., Loweth J. A., Christian D. T., Uejima J., Rabei R., Le T., et al. . (2016). AMPA receptor plasticity in Accumbens Core contributes to incubation of methamphetamine craving. Biol. Psychiatry 80, 661–670. doi: 10.1016/j.biopsych.2016.04.003 PubMed DOI PMC
Scofield M. D., Heinsbroek J. A., Gipson C. D., Kupchik Y. M., Spencer S., Smith A. C. W., et al. . (2016). The nucleus Accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol. Rev. 68, 816–871. doi: 10.1124/pr.116.012484 PubMed DOI PMC
Spuz C. A., Borszcz G. S. (2012). NMDA or non-NMDA receptor antagonism within the Amygdaloid central nucleus suppresses the affective dimension of pain in rats: evidence for hemispheric synergy. J. Pain 13, 328–337. doi: 10.1016/j.jpain.2011.12.007 PubMed DOI PMC
Stone T. W. (2021). Relationships and interactions between ionotropic glutamate receptors and nicotinic receptors in the CNS. Neuroscience 468, 321–365. doi: 10.1016/j.neuroscience.2021.06.007 PubMed DOI
Suto N., Ecke L. E., Wise R. A. (2009). Control of within-binge cocaine-seeking by dopamine and glutamate in the core of nucleus accumbens. Psychopharmacology 205, 431–439. doi: 10.1007/s00213-009-1553-0 PubMed DOI PMC
Sutton M. A., Schmidt E. F., Choi K.-H., Schad C. A., Whisler K., Simmons D., et al. . (2003). Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75. doi: 10.1038/nature01249 PubMed DOI
Tiwari R. K., Sharma V., Pandey R. K., Shukla S. S. (2020). Nicotine addiction: neurobiology and mechanism. J. Pharmacopuncture 23, 1–7. doi: 10.3831/KPI.2020.23.001 PubMed DOI PMC
Tobacco Use and Dependence Guideline Panel (2008). Treating tobacco use and dependence: 2008 update Rockville (MD): US Department of Health and Human Services.
Tzschentke T. M., Schmidt W. J. (2003). Glutamatergic mechanisms in addiction. Mol. Psychiatry 8, 373–382. doi: 10.1038/sj.mp.4001269 PubMed DOI
Ueno F., Suzuki T., Nakajima S., Matsushita S., Mimura M., Miyazaki T., et al. . (2019). Alteration in AMPA receptor subunit expression and receptor binding among patients with addictive disorders: a systematic review of human postmortem studies. Neuropsychopharmacol. Rep. 39, 148–155. doi: 10.1002/npr2.12058 PubMed DOI PMC
Unger J. B., Barker J., Cruz T. B., Leventhal A. M., Pentz M. A. (2022). Lucy—novel flavored nicotine gum, lozenges, and pouches: are they misleading consumers? Subst. Use Misuse. 57, 1328–1331. doi: 10.1080/10826084.2022.2076881 PubMed DOI PMC
Vanover K. E. (1998). Effects of AMPA receptor antagonists on dopamine-mediated behaviors in mice. Psychopharmacology 136, 123–131. doi: 10.1007/s002130050547 PubMed DOI
Volkow N. D., Michaelides M., Baler R. (2019). The neuroscience of drug reward and addiction. Physiol. Rev. 99, 2115–2140. doi: 10.1152/physrev.00014.2018 PubMed DOI PMC
Volkow N. D., Wang G. -J., Fowler J. S., Tomasi D., Telang F. (2011). Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci. 108, 15037–15042. doi: 10.1073/pnas.1010654108 PubMed DOI PMC
Walley S. C., Wilson K. M., Winickoff J. P., Groner J. (2019). A public health crisis: electronic cigarettes, vape, and JUUL. Pediatrics 143:e20182741. doi: 10.1542/peds.2018-2741 PubMed DOI
Wang F., Chen H., Steketee J. D., Sharp B. M. (2007). Upregulation of ionotropic glutamate receptor subunits within specific mesocorticolimbic regions during chronic nicotine self-administration. Neuropsychopharmacology 32, 103–109. doi: 10.1038/sj.npp.1301033 PubMed DOI PMC
Witkin J. M. (1993). Blockade of the locomotor stimulant effects of cocaine and methamphetamine by glutamate antagonists. Life Sci. 53:PL405–PL410. doi: 10.1016/0024-3205(93)90496-P PubMed DOI
Wolf M. E., Ferrario C. R. (2010). AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci. Biobehav. Rev. 35, 185–211. doi: 10.1016/j.neubiorev.2010.01.013 PubMed DOI PMC
Wooters T. E., Dwoskin L. P., Bardo M. T. (2011). Discriminative stimulus effects of NMDA, AMPA and mGluR5 glutamate receptor ligands in methamphetamine-trained rats. Behav. Pharmacol. 22, 516–524. doi: 10.1097/FBP.0b013e328349aafa PubMed DOI PMC
Xie X., Lasseter H. C., Ramirez D. R., Ponds K. L., Wells A. M., Fuchs R. A. (2012). Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats. Addict. Biol. 17, 287–299. doi: 10.1111/j.1369-1600.2011.00325.x PubMed DOI PMC
Yan N., Cao B., Xu J., Hao C., Zhang X., Li Y. (2012). Glutamatergic activation of anterior cingulate cortex mediates the affective component of visceral pain memory in rats. Neurobiol. Learn. Mem. 97, 156–164. doi: 10.1016/j.nlm.2011.11.003 PubMed DOI
Yasaei R., Saadabadi A. (2022). “Methamphetamine” in StatPearls (Treasure Island (FL): StatPearls Publishing; )
Zavala A. R., Browning J. R., Dickey E. D., Biswas S., Neisewander J. L. (2008). Region-specific involvement of AMPA/Kainate receptors in Fos protein expression induced by cocaine-conditioned cues. Eur. Neuropsychopharmacol. 18, 600–611. doi: 10.1016/j.euroneuro.2008.04.010 PubMed DOI PMC