Tick Thioester-Containing Proteins and Phagocytosis Do Not Affect Transmission of Borrelia afzelii from the Competent Vector Ixodes ricinus
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28361038
PubMed Central
PMC5352706
DOI
10.3389/fcimb.2017.00073
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia, Ixodes, complement, phagocytosis, thioester-containing proteins,
- MeSH
- arachnida jako vektory imunologie mikrobiologie MeSH
- Borrelia burgdorferi komplex imunologie MeSH
- fagocytóza * MeSH
- hemocyty imunologie MeSH
- klíště imunologie mikrobiologie MeSH
- komplement metabolismus MeSH
- lymeská nemoc přenos MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- přenos infekční nemoci MeSH
- proteiny členovců metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplement MeSH
- proteiny členovců MeSH
The present concept of the transmission of Lyme disease from Borrelia-infected Ixodes sp. ticks to the naïve host assumes that a low number of spirochetes that manage to penetrate the midgut epithelium migrate through the hemocoel to the salivary glands and subsequently infect the host with the aid of immunomodulatory compounds present in tick saliva. Therefore, humoral and/or cellular immune reactions within the tick hemocoel may play an important role in tick competence to act as a vector for borreliosis. To test this hypothesis we have examined complement-like reactions in the hemolymph of the hard tick Ixodes ricinus against Borrelia afzelii (the most common vector and causative agent of Lyme disease in Europe). We demonstrate that I. ricinus hemolymph does not exhibit borreliacidal effects comparable to complement-mediated lysis of bovine sera. However, after injection of B. afzelii into the tick hemocoel, the spirochetes were efficiently phagocytosed by tick hemocytes and this cellular defense was completely eliminated by pre-injection of latex beads. As tick thioester-containing proteins (T-TEPs) are components of the tick complement system, we performed RNAi-mediated silencing of all nine genes encoding individual T-TEPs followed by in vitro phagocytosis assays. Silencing of two molecules related to the C3 complement component (IrC3-2 and IrC3-3) significantly suppressed phagocytosis of B. afzelii, while knockdown of IrTep (insect type TEP) led to its stimulation. However, RNAi-mediated silencing of T-TEPs or elimination of phagocytosis by injection of latex beads in B. afzelii-infected I. ricinus nymphs had no obvious impact on the transmission of spirochetes to naïve mice, as determined by B. afzelii infection of murine tissues following tick infestation. This result supports the concept that Borrelia spirochetes are capable of avoiding complement-related reactions within the hemocoel of ticks competent to transmit Lyme disease.
Zobrazit více v PubMed
Bhide M. R., Travnicek M., Levkutova M., Curlik J., Revajova V., Levkut M. (2005). Sensitivity of Borrelia genospecies to serum complement from different animals and human: a host-pathogen relationship. FEMS Immunol. Med. Microbiol. 43, 165–172. 10.1016/j.femsim.2004.07.012 PubMed DOI
Buresova V., Franta Z., Kopacek P. (2006). A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J. Invertebr. Pathol. 93, 96–104. 10.1016/j.jip.2006.05.006 PubMed DOI
Buresova V., Hajdusek O., Franta Z., Loosova G., Grunclova L., Levashina E. A., et al. . (2011). Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system. J. Innate Immun. 3, 623–630. 10.1159/000328851 PubMed DOI
Buresova V., Hajdusek O., Franta Z., Sojka D., Kopacek P. (2009). IrAM-An α2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev. Comp. Immunol. 33, 489–498. 10.1016/j.dci.2008.09.011 PubMed DOI
Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. (1982). Lyme disease-a tick-borne spirochetosis? Science 216, 1317–1319. PubMed
Chou S., Daugherty M. D., Peterson S. B., Biboy J., Yang Y., Jutras B. L., et al. . (2015). Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature 518, 98–101. 10.1038/nature13965 PubMed DOI PMC
Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L. (1997). Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89, 1111–1119. PubMed
Dai J., Narasimhan S., Zhang L., Liu L., Wang P., Fikrig E. (2010). Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the lyme disease agent. PLoS Pathog. 6:e1001205. 10.1371/journal.ppat.1001205 PubMed DOI PMC
Dai J., Wang P., Adusumilli S., Booth C. J., Narasimhan S., Anguita J., et al. . (2009). Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 6, 482–492. 10.1016/j.chom.2009.10.006 PubMed DOI PMC
de la Fuente J., Estrada-Pena A., Venzal J. M., Kocan K. M., Sonenshine D. E. (2008). Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13:6938–6946. 10.2741/3200 PubMed DOI
De Silva A. M., Fikrig E. (1995). Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am. J. Trop. Med. Hyg. 53, 397–404. PubMed
De Taeye S. W., Kreuk L., Van Dam A. P., Hovius J. W., Schuijt T. J. (2013). Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends Parasitol. 29, 119–128. 10.1016/j.pt.2012.12.001 PubMed DOI
Dunham-Ems S. M., Caimano M. J., Pal U., Wolgemuth C. W., Eggers C. H., Balic A., et al. . (2009). Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Invest. 119, 3652–3665. 10.1172/JCI39401 PubMed DOI PMC
Hajdusek O., Sima R., Ayllon N., Jalovecka M., Perner J., de la Fuente J., et al. . (2013). Interaction of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol. 3:26. 10.3389/fcimb.2013.00026 PubMed DOI PMC
Hojgaard A., Eisen R. J., Piesman J. (2008). Transmission dynamics of Borrelia burgdorferi s.s. during the key third day of feeding by nymphal Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 45, 732–736. 10.1603/0022-2585(2008)45[732:TDOBBS]2.0.CO;2 PubMed DOI
Johns R., Ohnishi J., Broadwater A., Sonenshine D. E., De Silva A. M., Hynes W. L. (2001). Contrasts in tick innate immune responses to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). J. Med. Entomol. 38, 99–107. 10.1603/0022-2585-38.1.99 PubMed DOI
Johns R., Sonenshine D. E., Hynes W. L. (2000). Response of the tick Dermacentor variabilis (Acari: Ixodidae) to hemocoelic inoculation of Borrelia burgdorferi (Spirochetales). J. Med. Entomol. 37, 265–270. 10.1603/0022-2585-37.2.265 PubMed DOI
Jongejan F., Uilenberg G. (2004). The global importance of ticks. Parasitology 129(Suppl.), S3–S14. 10.1017/S0031182004005967 PubMed DOI
Kopacek P., Hajdusek O., Buresova V. (2012). Tick as a model for the study of a primitive complement system. Adv. Exp. Med. Biol. 710, 83–93. 10.1007/978-1-4419-5638-5_9 PubMed DOI
Kung F., Anguita J., Pal U. (2013). Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol. 8, 41–56. 10.2217/fmb.12.121 PubMed DOI PMC
Kuo M. M., Lane R. S., Giclas P. C. (2000). A comparative study of mammalian and reptilian alternative pathway of complement-mediated killing of the Lyme disease spirochete (Borrelia burgdorferi). J. Parasitol. 86, 1223–1228. 10.1645/0022-3395(2000)086[1223:ACSOMA]2.0.CO;2 PubMed DOI
Kurtenbach K., De Michelis S., Etti S., Schafer S. M., Sewell H. S., Brade V., et al. . (2002). Host association of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol 10, 74–79. PubMed
Kurtenbach K., Sewell H. S., Ogden N. H., Randolph S. E., Nuttall P. A. (1998). Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun. 66, 1248–1251. 10.1016/S0966-842X(01)02298-3 PubMed DOI PMC
Liu L., Narasimhan S., Dai J., Zhang L., Cheng G., Fikrig E. (2011). Ixodes scapularis salivary gland protein P11 facilitates migration of Anaplasma phagocytophilum from the tick gut to salivary glands. EMBO Rep. 12, 1196–1203. 10.1038/embor.2011.177 PubMed DOI PMC
Malawista S. E., de Boisfleury Chevance A. (2008). Clocking the Lyme spirochete. PLoS ONE 3:e1633. 10.1371/journal.pone.0001633 PubMed DOI PMC
Mattila J. T., Munderloh U. G., Kurtti T. J. (2007). Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii. J. Insect Sci. 7:58. 10.1673/031.007.5801 PubMed DOI PMC
Moita L. F., Wang-Sattler R., Michel K., Zimmermann T., Blandin S., Levashina E. A., et al. . (2005). In vivo identification of novel regulators and conserved pathways of phagocytosis in A. gambiae. Immunity 23, 65–73. 10.1016/j.immuni.2005.05.006 PubMed DOI
Munderloh U. G., Kurtti T. J. (1995). Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Annu. Rev. Entomol. 40, 221–243. 10.1146/annurev.en.40.010195.001253 PubMed DOI
Narasimhan S., Fikrig E. (2015). Tick microbiome: the force within. Trends Parasitol. 31, 315–323. 10.1016/j.pt.2015.03.010 PubMed DOI PMC
Narasimhan S., Sukumaran B., Bozdogan U., Thomas V., Liang X., Deponte K., et al. . (2007). A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2, 7–18. 10.1016/j.chom.2007.06.001 PubMed DOI PMC
Nehme N. T., Quintin J., Cho J. H., Lee J., Lafarge M. C., Kocks C., et al. . (2011). Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS ONE 6:e14743. 10.1371/journal.pone.0014743 PubMed DOI PMC
Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., et al. . (2004). TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457–468. 10.1016/j.cell.2004.10.027 PubMed DOI
Perner J., Sobotka R., Sima R., Konvickova J., Sojka D., Oliveira P. L., et al. . (2016). Acquisition of exogenous haem is essential for tick reproduction. Elife 5:e12318. 10.7554/eLife.12318 PubMed DOI PMC
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. 10.1093/nar/29.9.e45 PubMed DOI PMC
Piesman J., Gern L. (2004). Lyme borreliosis in Europe and North America. Parasitology 129(Suppl.), S191–S220. 10.1017/S0031182003004694 PubMed DOI
Radolf J. D., Caimano M. J., Stevenson B., Hu L. T. (2012). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99. 10.1038/nrmicro2714 PubMed DOI PMC
Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X. F., Fish D., et al. . (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577. 10.1038/nature03812 PubMed DOI PMC
Ribeiro J. M., Mather T. N., Piesman J., Spielman A. (1987). Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J. Med. Entomol. 24, 201–205. PubMed
Rittig M. G., Kuhn K. H., Dechant C. A., Gauckler A., Modolell M., Ricciardi-Castagnoli P., et al. . (1996). Phagocytes from both vertebrate and invertebrate species use “coiling” phagocytosis. Dev. Comp. Immunol. 20, 393–406. PubMed
Schuijt T. J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., et al. . (2011). A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe 10, 136–146. 10.1016/j.chom.2011.06.010 PubMed DOI PMC
Schwaiger M., Peter O., Cassinotti P. (2001). Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clin. Microbiol. Infect 7, 461–469. 10.1046/j.1198-743x.2001.00282.x PubMed DOI
Smith A. A., Navasa N., Yang X., Wilder C. N., Buyuktanir O., Marques A., et al. . (2016). Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe 20, 91–98. 10.1016/j.chom.2016.06.001 PubMed DOI PMC
Soares C. A., Zeidner N. S., Beard C. B., Dolan M. C., Dietrich G., Piesman J. (2006). Kinetics of Borrelia burgdorferi infection in larvae of refractory and competent tick vectors. J. Med. Entomol. 43, 61–67. 10.1093/jmedent/43.1.61 PubMed DOI
Stanek G., Wormser G. P., Gray J., Strle F. (2012). Lyme borreliosis. Lancet 379, 461–473. 10.1016/S0140-6736(11)60103-7 PubMed DOI
Stroschein-Stevenson S. L., Foley E., O'farrell P. H., Johnson A. D. (2006). Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 4:e4. 10.1371/journal.pbio.0040004 PubMed DOI PMC
Ticha L., Golovchenko M., Oliver J. H., Jr., Grubhoffer L., Rudenko N. (2016). Sensitivity of lyme borreliosis spirochetes to serum complement of regular zoo animals: potential reservoir competence of some exotic vertebrates. Vector Borne Zoonotic Dis. 16, 13–19. 10.1089/vbz.2015.1847 PubMed DOI
Urbanova V., Hartmann D., Grunclova L., Sima R., Flemming T., Hajdusek O., et al. . (2014). IrFC - an Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Dev. Comp. Immunol. 46, 439–447. 10.1016/j.dci.2014.05.016 PubMed DOI
Urbanova V., Sima R., Sauman I., Hajdusek O., Kopacek P. (2015). Thioester-containing proteins of the tick Ixodes ricinus: gene expression, response to microbial challenge and their role in phagocytosis of the yeast Candida albicans. Dev. Comp. Immunol. 48, 55–64. 10.1016/j.dci.2014.09.004 PubMed DOI
Zhang L., Zhang Y., Adusumilli S., Liu L., Narasimhan S., Dai J., et al. . (2011). Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 7:e1002079. 10.1371/journal.ppat.1002079 PubMed DOI PMC
Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges
Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice