Putative morphology of Neoehrlichia mikurensis in salivary glands of Ixodes ricinus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32994495
PubMed Central
PMC7525475
DOI
10.1038/s41598-020-72953-0
PII: 10.1038/s41598-020-72953-0
Knihovny.cz E-zdroje
- MeSH
- Anaplasmataceae genetika izolace a purifikace ultrastruktura MeSH
- DNA bakterií genetika MeSH
- klíště mikrobiologie fyziologie MeSH
- krmivo pro zvířata MeSH
- slinné žlázy mikrobiologie MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
Neoehrlichia mikurensis is an emerging tick-borne intracellular pathogen causing neoehrlichiosis. Its putative morphology was described in mammalian, but not in tick cells. In this study, we aim to show the presumptive morphology of N. mikurensis in salivary glands of engorged females of Ixodes ricinus. To accomplish this, we collected I. ricinus ticks in a locality with a high N. mikurensis prevalence, allowed them to feed in the artificial in vitro feeding system, dissected salivary glands and screened them by PCR for N. mikurensis and related bacteria. Ultrathin sections of salivary glands positive for N. mikurensis but negative for other pathogens were prepared and examined by transmission electron microscopy. We observed two individual organisms strongly resembling N. mikurensis in mammalian cells as described previously. Both bacteria were of ovoid shape between 0.5-0.8 μm surrounded by the inner cytoplasmic and the rippled outer membrane separated by an irregular electron-lucent periplasmic space. Detection of N. mikurensis in salivary glands of I. ricinus suggests that this bacterium uses the "salivary pathway of transmission" to infect mammals.
Zobrazit více v PubMed
Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA. Candidatus Neoehrlichia mikurensis Europe. New Microb. New Infect. 2018;22:30–36. doi: 10.1016/j.nmni.2017.12.011. PubMed DOI PMC
Wennerås C. Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin. Microbiol. Infect. 2015;21:621–630. doi: 10.1016/j.cmi.2015.02.030. PubMed DOI
Burri C, Schumann O, Schumann C, Gern L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick. Borne. Dis. 2014;5:245–251. PubMed
Schouls LM, van de Pol I, Rijpkema SGT, Schot CS. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J. Clin. Microbiol. 1999;37:2215–2222. doi: 10.1128/JCM.37.7.2215-2222.1999. PubMed DOI PMC
Li H, et al. Human infection with Candidatus Neoehrlichia mikurensis China. Emerg. Infect. Dis. 2012;18:1636–1639. doi: 10.3201/eid1810.120594. PubMed DOI PMC
von Loewenich FD, et al. Detection of ‘Candidatus Neoehrlichia mikurensis’ in two patients with severe febrile illnesses: Evidence for a European sequence variant. J. Clin. Microbiol. 2010;48:2630–2635. doi: 10.1128/JCM.00588-10. PubMed DOI PMC
Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C. First case of human ‘Candidatus Neoehrlichia mikurensis’ infection in a febrile patient with chronic lymphocytic leukemia. J. Clin. Microbiol. 2010;48:1956–1959. doi: 10.1128/JCM.02423-09. PubMed DOI PMC
Welc-Falȩciak R, Siński E, Kowalec M, Zajkowska J, Pancewicz SA. Asymptomatic ‘Candidatus Neoehrlichia mikurensis’ infections in immunocompetent humans. J. Clin. Microbiol. 2014;52:3072–3074. doi: 10.1128/JCM.00741-14. PubMed DOI PMC
Wass L, et al. Cultivation of the causative agent of human neoehrlichiosis from clinical isolates identifies vascular endothelium as a target of infection. Emerg. Microb. Infect. 2019;8:413–425. doi: 10.1080/22221751.2019.1584017. PubMed DOI PMC
Kawahara M, et al. Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int. J. Syst. Evol. Microbiol. 2004;54:1837–1843. doi: 10.1099/ijs.0.63260-0. PubMed DOI
Pekova S, et al. Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic patients: benefit of molecular techniques for rare pathogen detection. Diagn. Microbiol. Infect. Dis. 2011;69:266–270. doi: 10.1016/j.diagmicrobio.2010.10.004. PubMed DOI
Dedonder SE, Cheng C, Willard LH, Boyle DL, Ganta RR. Transmission electron microscopy reveals distinct macrophage- and tick cell-specific morphological stages of Ehrlichia chaffeensis. PLoS ONE. 2012;7:e36749. doi: 10.1371/journal.pone.0036749. PubMed DOI PMC
Tkadlec E, Václavík T, Kubelová M, Široký P. Negative spatial covariation in abundance of two European ticks: Diverging niche preferences or biotic interaction? Ecol. Entomol. 2018;43:804–812. doi: 10.1111/een.12668. DOI
Ondruš J, et al. Candidatus Neoehrlichia mikurensis is widespread in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick. Borne. Dis. 2020;11:101371. doi: 10.1016/j.ttbdis.2020.101371. PubMed DOI
Kröber T, Guerin PM. An in vitro feeding assay to test acaricides for control of hard ticks. Pest Manag. Sci. 2007;63:17–22. doi: 10.1002/ps.1293. PubMed DOI
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC
Kocan KM, De La Fuente J, Blouin EF, Garcia-Garcia JC. Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology. 2004;129:S285–S300. doi: 10.1017/S0031182003004700. PubMed DOI
Benach JL, Coleman JL, Skinner RA, Rosler EM. Adult Ixodes dammini on rabbits: A hypothesis for the development and transmission of Borrelia burgdorferi. J. Infect. Dis. 1987;155:1300–1306. doi: 10.1093/infdis/155.6.1300. PubMed DOI
Pospisilova T, et al. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 2019;87:e00896–e918. doi: 10.1128/IAI.00896-18. PubMed DOI PMC
Lynn GE, et al. Tissue distribution of the Ehrlichiamuris-like agent in a tick vector. PLoS ONE. 2015;10:e0122007. doi: 10.1371/journal.pone.0122007. PubMed DOI PMC
Grankvist A, et al. Infections with the tick-borne bacterium ‘Candidatus Neoehrlichia mikurensis’ mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 2014;58:1716–1722. doi: 10.1093/cid/ciu189. PubMed DOI
Fehr JS, et al. Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg. Infect. Dis. 2010;16:1127–1129. doi: 10.3201/eid1607.091907. PubMed DOI PMC
Rikihisa Y. The tribe Ehrlichieae and ehrlichial diseases. Clin. Microbiol. Rev. 1991;4:286–308. doi: 10.1128/CMR.4.3.286. PubMed DOI PMC
Munderloh UG, Liu Y, Wang MM, Chen CS, Kurtti TJ. Establishment, maintenance and description of cell-lines from the tick Ixodes scapularis. J. Parasitol. 1994;80:533–543. doi: 10.2307/3283188. PubMed DOI
Munderloh UG, Yabsley MJ, Murphy SM, Luttrell PM, Howerth EW. Isolation and establishment of the raccoon Ehrlichia-like agent in tick cell culture. Vector-Borne Zoonotic Dis. 2007;7:418–425. doi: 10.1089/vbz.2007.0640. PubMed DOI
Yabsley MJ, et al. Characterization of ‘Candidatus Neoehrlichia lotoris’ (family Anaplasmataceae) from raccoons (Procyon lotor) Int. J. Syst. Evol. Microbiol. 2008;58:2794–2798. doi: 10.1099/ijs.0.65836-0. PubMed DOI PMC
Rar VA, et al. Molecular-genetic and ultrastructural characteristics of ‘Candidatus Ehrlichia khabarensis’, a new member of the Ehrlichia genus. Ticks Tick Borne Dis. 2015;6:658–667. doi: 10.1016/j.ttbdis.2015.05.012. PubMed DOI
Munderloh UG, et al. Isolation of the equine granulocytic ehrlichiosis agent, Ehrlichia equi, in tick cell culture. J. Clin. Microbiol. 1996;34:664–670. doi: 10.1128/JCM.34.3.664-670.1996. PubMed DOI PMC
Roingeard P. Viral detection by electron microscopy: Past, present and future. Biol. Cell. 2008;100:491–501. doi: 10.1042/BC20070173. PubMed DOI PMC