Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.
- MeSH
- antimanika farmakologie terapeutické užití MeSH
- bipolární porucha * farmakoterapie genetika MeSH
- celogenomová asociační studie * metody MeSH
- farmakogenetika metody MeSH
- fokální adheze * účinky léků genetika MeSH
- genomika metody MeSH
- genové regulační sítě * účinky léků genetika MeSH
- indukované pluripotentní kmenové buňky účinky léků metabolismus MeSH
- lidé MeSH
- lithium * farmakologie terapeutické užití MeSH
- multiomika MeSH
- neurony metabolismus účinky léků MeSH
- sloučeniny lithia farmakologie terapeutické užití MeSH
- stanovení celkové genové exprese metody MeSH
- transkriptom * genetika účinky léků MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
- MeSH
- bipolární porucha * farmakoterapie genetika MeSH
- celogenomová asociační studie MeSH
- fokální adheze MeSH
- fosfatidylinositol-3-kinasy genetika MeSH
- lidé MeSH
- lithium * farmakologie terapeutické užití MeSH
- multiomika MeSH
- protoonkogenní proteiny c-akt genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
- MeSH
- buněčná adheze * MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie fyziologie MeSH
- galektiny metabolismus MeSH
- integriny metabolismus MeSH
- krevní proteiny metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie fyziologie MeSH
- spoje buňka-matrix metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Src kinase plays an important role in a multitude of fundamental cellular processes and is often found deregulated in tumors. Active Src adopts an open conformation, whereas inactive Src is characterized by a very compact structure stabilized by inhibitory intramolecular interactions. Taking advantage of this spatial regulation, we constructed a fluorescence resonance energy transfer (FRET)-based Src biosensor and analyzed conformational changes of Src following Src activation and the spatiotemporal dynamics of Src activity in cells. We found that activatory mutations either in regulatory or kinase domains induce opening of the Src structure. Surprisingly, we discovered that Src inhibitors differ in their effect on the Src structure, some counterintuitively inducing an open conformation. Finally, we analyzed the dynamics of Src activity in focal adhesions by FRET imaging and found that Src is rapidly activated during focal adhesion assembly, and its activity remains steady and high throughout the life cycle of focal adhesion and decreases during focal adhesion disassembly.
- MeSH
- biosenzitivní techniky metody MeSH
- fokální adheze metabolismus MeSH
- FRAP MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mutageneze MeSH
- rezonanční přenos fluorescenční energie MeSH
- skupina kinas odvozených od src-genu antagonisté a inhibitory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The mechanoregulated proteins YAP/TAZ are involved in the adipogenic/osteogenic switch of mesenchymal stem cells (MSCs). MSC fate decision can be unbalanced by controlling substrate mechanics, in turn altering the transmission of tension through cell cytoskeleton. MSCs have been proposed for orthopedic and reconstructive surgery applications. Thus, a tight control of their adipogenic potential is required in order to avoid their drifting towards fat tissue. Substrate mechanics has been shown to drive MSC commitment and to regulate YAP/TAZ protein shuttling and turnover. The mechanism by which YAP/TAZ co-transcriptional activity is mechanically regulated during MSC fate acquisition is still debated. Here, we design few bioengineering tools suited to disentangle the contribution of mechanical from biological stimuli to MSC adipogenesis. We demonstrate that the mechanical repression of YAP happens through its phosphorylation, is purely mediated by cell spreading downstream of substrate mechanics as dictated by dimensionality. YAP repression is sufficient to prompt MSC adipogenesis, regardless of a permissive biological environment, TEAD nuclear presence or focal adhesion stabilization. Finally, by harnessing the potential of YAP mechanical regulation, we propose a practical example of the exploitation of adipogenic transdifferentiation in tumors.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- adipogeneze * MeSH
- aktiny metabolismus MeSH
- buněčné jádro metabolismus MeSH
- extracelulární matrix metabolismus MeSH
- fokální adheze metabolismus MeSH
- fosforylace MeSH
- genetická transkripce MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- pohyb buněk * MeSH
- přeprogramování buněk MeSH
- proliferace buněk MeSH
- transkripční faktory metabolismus MeSH
- tuková tkáň cytologie MeSH
- tukové buňky metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.
- MeSH
- buněčná adheze účinky léků fyziologie MeSH
- dasatinib farmakologie MeSH
- fibronektiny metabolismus MeSH
- fokální adheze účinky léků metabolismus MeSH
- fokální adhezní tyrosinkinasy metabolismus MeSH
- fosforylace účinky léků MeSH
- leukemie farmakoterapie MeSH
- lidé MeSH
- skupina kinas odvozených od src-genu účinky léků metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.
- MeSH
- alkalická fosfatasa metabolismus MeSH
- biokompatibilní potahované materiály MeSH
- buněčná adheze * MeSH
- buněčná diferenciace * MeSH
- buněčné linie MeSH
- chrom chemie MeSH
- diamant chemie MeSH
- fokální adheze MeSH
- kolagen typu I metabolismus MeSH
- kovy chemie MeSH
- lasery MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- osteoblasty cytologie MeSH
- osteogeneze MeSH
- povrchové vlastnosti MeSH
- stanovení celkové genové exprese MeSH
- talin chemie MeSH
- uhlík chemie MeSH
- vinkulin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The opinion regarding the origin of adult stem cells that should be used for living bone construct generation is strongly divided in the scientific community. In this study, the potential of chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) material as a scaffold for bone regeneration applications was evaluated by behaviour comparison of adult stem cells derived from both origins-adipose derived mesenchymal stem cell (ADSC) tissue and bone marrow derived mesenchymal stem cells (BMDSCs). In the case of ADSC isolation, low and high negative pressures were applied during a liposuction procedure in order to determine if negative pressure settings may have an impact on subsequent cell behaviour in vitro. The obtained results demonstrated that the chit/glu/HA material is a promising candidate to be used for living bone graft production in vitro as both ADSCs and BMDSCs revealed a satisfactory proliferation and differentiation ability on its surface. Nevertheless, BMDSCs would be a better choice of adult stem cells since they were better spread, more strongly attached and showed a more superior proliferation and differentiation ability than ADSCs when cultured on the chit/glu/HA scaffold. However, if BMDSCs cannot be isolated, ADSCs may be used for bone construct production but lipoaspirate should be collected under low negative pressure (-200 mm Hg), as high negative pressure (-700 mmHg) applied during liposuction surgery may retard subsequent ADSC proliferation and type I collagen production.
- MeSH
- beta-glukany chemie MeSH
- biokompatibilní materiály chemie MeSH
- buněčná diferenciace MeSH
- chitosan chemie MeSH
- fokální adheze MeSH
- hydroxyapatit chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie fyziologie MeSH
- osteogeneze MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- regenerace kostí MeSH
- testování materiálů MeSH
- tkáňové podpůrné struktury chemie MeSH
- tuková tkáň cytologie MeSH
- Check Tag
- lidé MeSH
The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition.
- MeSH
- fokální adheze metabolismus MeSH
- fosforylace MeSH
- lidé MeSH
- myši MeSH
- pohyb buněk fyziologie MeSH
- proteiny aktivující GTPasu genetika metabolismus MeSH
- rho proteiny vázající GTP antagonisté a inhibitory metabolismus MeSH
- rhoA protein vázající GTP antagonisté a inhibitory metabolismus MeSH
- skupina kinas odvozených od src-genu metabolismus MeSH
- tyrosin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH