A combined biochemical and computational approach provides evidence for membrane remodelling by the structural scaffold of the endocytic TPLATE complex

. 2025 Nov ; 11 (11) : 2423-2436. [epub] 20251112

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41224962
Odkazy

PubMed 41224962
DOI 10.1038/s41477-025-02146-y
PII: 10.1038/s41477-025-02146-y
Knihovny.cz E-zdroje

Eukaryotic cells maintain homeostasis of their outer membrane by controlled internalization of lipid and protein constituents via endocytosis. Endocytosis is evolutionary conserved and uses similarly folded domains. How these structural folds are combined into proteins and protein complexes, however, differs between eukaryotic kingdoms. The TPLATE complex (TPC) in plants is an evolutionary ancient protein module that combines several protein domains with a conserved role in endocytosis into a single octameric protein complex. Its molecular architecture, lipid-nucleated condensate formation and requirement for clathrin cage curvature revealed its function in endocytosis initiation in plants. Mechanistic understanding of how this complex drives membrane deformation during plant endocytosis is, however, lacking. Here we used an integrative structural approach to obtain a precise molecular structure of the TPC of Arabidopsis thaliana. In addition, our approach allowed visualizing the structural flexibility that hallmarks this enigmatic complex. We prove that the intrinsic structural flexibility is required for its functionality and membrane recruitment. The membrane-binding interface consists of several domains with differential lipid preferences. Finally, we demonstrate via molecular dynamics simulations that the crescent shape of the structured part of the complex is sufficient for membrane curvature generation. Our mechanistic insight, obtained by a combined biochemical and computational approach, shows that the structured part of the TPC likely contributes to the execution of plant endocytosis, which does not depend on cytoskeletal-based force generation.

Zobrazit více v PubMed

Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018). PubMed DOI

Kraus, M., Pleskot, R. & Van Damme, D. Structural and evolutionary aspects of plant endocytosis. Annu. Rev. Plant Biol. 75, 521–550 (2024). PubMed DOI

Narasimhan, M. et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife 9, e52067 (2020). PubMed DOI PMC

Bitsikas, V., Corrêa, I. R. & Nichols, B. J. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 2014, 1–26 (2014).

Dragwidge, J. M. et al. Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants. Nat. Cell Biol. 26, 438–449 (2024). PubMed DOI

Day, K. J. et al. Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat. Cell Biol. 23, 366–376 (2021). PubMed DOI PMC

Kozak, M. & Kaksonen, M. Condensation of Ede1 promotes the initiation of endocytosis. eLife 11, e72865 (2022). PubMed DOI PMC

Zaccai, N. R., et al. FCHO controls AP2’s initiating role in endocytosis through a PtdIns(4,5)P2-dependent switch. Sci. Adv. 8, 2018 (2022). DOI

Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012). PubMed DOI PMC

Smith, S. M. et al. Multi-modal adaptor-clathrin contacts drive coated vesicle assembly. EMBO J. 40, e108795 (2021). PubMed DOI PMC

Yamaoka, S. et al. Identification and dynamics of Arabidopsis Adaptor Protein-2 complex and its involvement in floral organ development. Plant Cell 25, 2958–2969 (2013). PubMed DOI PMC

Kim, S. Y. et al. Adaptor protein complex 2–mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25, 2970–2985 (2013). PubMed DOI PMC

Di Rubbo, S. et al. The clathrin adaptor complex AP-2 mediates endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis. Plant Cell 25, 2986–2997 (2013). PubMed DOI PMC

Fan, L. et al. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140, 3826–3837 (2013). PubMed DOI

Gadeyne, A. et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156, 691–704 (2014). PubMed DOI

Wang, J. et al. Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc. Natl Acad. Sci. USA 118, e2023456118 (2021). PubMed DOI PMC

Van Damme, D. et al. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18, 3502–3518 (2006). PubMed DOI PMC

Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 5132 (2019). PubMed DOI PMC

Dacks, J. B. & Robinson, M. S. Outerwear through the ages: evolutionary cell biology of vesicle coats. Curr. Opin. Cell Biol. 47, 108–116 (2017). PubMed DOI

Hirst, J. et al. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3, e02866 (2014). PubMed DOI PMC

More, K., Klinger, C. M., Barlow, L. D. & Dacks, J. B. Evolution and natural history of membrane trafficking in eukaryotes. Curr. Biol. 30, R553–R564 (2020). PubMed DOI

Wang, J. et al. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiol. 183, 986–997 (2020). PubMed DOI PMC

Yperman, K. et al. Molecular architecture of the endocytic TPLATE complex. Sci. Adv. 7, 7999–8025 (2021). DOI

Yperman, K. et al. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Nat. Commun. 12, 3050 (2021). PubMed DOI PMC

Grones, P. et al. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. Nat. Plants 8, 1467–1483 (2022). PubMed DOI

Dodonova, S. O. et al. 9 Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. eLife 6, e26691 (2017). PubMed DOI PMC

Dodonova, S. O. et al. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195–198 (2015). PubMed DOI

Kovtun, O., Dickson, V. K., Kelly, B. T., Owen, D. J. & Briggs, J. A. G. Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Sci. Adv. 6, 8381–8403 (2020). DOI

Paraan, M. et al. The structures of natively assembled clathrin-coated vesicles. Sci. Adv. 6, eaba8397 (2020). PubMed DOI PMC

Rout, M. P. & Sali, A. Principles for integrative structural biology studies. Cell 177, 1384–1403 (2019). PubMed DOI PMC

Russel, D., et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012). PubMed DOI PMC

Lee, K. & O’Reilly, F. J. Cross-linking mass spectrometry for mapping protein complex topologies in situ. Essays Biochem. 67, 215–228 (2023). PubMed DOI PMC

Piersimoni, L. & Sinz, A. Cross-linking/mass spectrometry at the crossroads. Anal. Bioanal. Chem. 412, 5981–5987 (2020). PubMed DOI PMC

Matzinger, M. & Mechtler, K. Cleavable cross-linkers and mass spectrometry for the ultimate task of profiling protein-protein interaction networks in vivo. J. Proteome Res. 20, 78–93 (2021). PubMed DOI

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed DOI PMC

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022). PubMed DOI PMC

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). PubMed DOI PMC

Träger, T. K., Tüting, C. & Kastritis, P. L. The human touch: utilizing AlphaFold 3 to analyze structures of endogenous metabolons. Structure 32, 1555–1562 (2024). PubMed DOI

Yariv, B. et al. Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci. 32, e4582 (2023). PubMed DOI PMC

Klinger, C. M., Spang, A., Dacks, J. B. & Ettema, T. J. G. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33, 1528–1541 (2016). PubMed DOI

Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010). PubMed DOI PMC

Vermeer, J. E. M. et al. Visualization of PtdIns3P dynamics in living plant cells. Plant J. 47, 687–700 (2006). PubMed DOI

Caillaud, M. C. Anionic lipids: a pipeline connecting key players of plant cell division. Front. Plant Sci. 10, 442705 (2019). DOI

Lebecq, A. et al. The phosphoinositide signature guides the final step of plant cytokinesis. Sci. Adv. 9, eadf7523 (2023). DOI

Doumane, M. et al. Inducible depletion of PI(4,5)P PubMed DOI PMC

Noack, L. C. & Jaillais, Y. Functions of anionic lipids in plants. Annu. Rev. Plant Biol. 71, 71–102 (2020). PubMed DOI

Johnson, A. et al. The TPLATE complex mediates membrane bending during plant clathrin–mediated endocytosis. Proc. Natl Acad. Sci. USA 118, e2113046118 (2021). PubMed DOI PMC

González, A. et al. Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature 618, 394–401 (2023). PubMed DOI PMC

Ford, M. G. J. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002). PubMed DOI

Marrink, S. J. & Tieleman, D. P. Perspective on the Martini model. Chem. Soc. Rev. 42, 6801–6822 (2013). PubMed DOI

Siggel, M., Bhaskara, R. M., Moesser, M. K., Dikić, I. & Hummer, G. FAM134B-RHD protein clustering drives spontaneous budding of asymmetric membranes. J. Phys. Chem. Lett. 12, 1926–1931 (2021). PubMed DOI PMC

Poveda-Cuevas, S. A. et al. Intrinsically disordered region amplifies membrane remodeling to augment selective ER-phagy. Proc. Natl Acad. Sci. USA 121, e2408071121 (2024). PubMed DOI PMC

Wang, Y. et al. Biomolecular condensates mediate bending and scission of endosome membranes. Nature 634, 1204–1210 (2024). PubMed DOI PMC

Kusumaatmaja, H. et al. Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation. Proc. Natl Acad. Sci. USA 118, e2024109118 (2021). PubMed DOI PMC

Johnson, D. H., Kou, O. H., Bouzos, N. & Zeno, W. F. Protein–membrane interactions: sensing and generating curvature. Trends Biochem. Sci. 49, 401–416 (2024). PubMed DOI PMC

Schiano Lomoriello, I., Sigismund, S. & Day, K. J. Biophysics of endocytic vesicle formation: a focus on liquid–liquid phase separation. Curr. Opin. Cell Biol. 75, 102068 (2022). PubMed DOI

Zeno, W. F., et al. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat. Commun. 9, 4152 (2018). PubMed DOI PMC

Zeno, W. F. et al. Molecular mechanisms of membrane curvature sensing by a disordered protein. J. Am. Chem. Soc. 141, 10361–10371 (2019). PubMed DOI PMC

Bhaskara, R. M., et al. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 10, 2370 (2019). PubMed DOI PMC

Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013). PubMed DOI PMC

Sochacki, K. A., Dickey, A. M., Strub, M. P. & Taraska, J. W. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361 (2017). PubMed DOI PMC

Johnson, A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J. Cell Sci. 137, jcs261847 (2024). PubMed DOI PMC

Beauzamy, L., Nakayama, N. & Boudaoud, A. Flowers under pressure: ins and outs of turgor regulation in development. Ann. Bot. 114, 1517–1533 (2014). PubMed DOI PMC

Van Leene, J. et al. A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol. Cell. Proteom. 6, 1226–1238 (2007). DOI

Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). PubMed DOI

Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). PubMed DOI

Birklbauer, M. J., Matzinger, M., Müller, F., Mechtler, K. & Dorfer, V. MS Annika 2.0 identifies cross-linked peptides in MS2-MS3-based workflows at high sensitivity and specificity. J. Proteome Res. 22, 3009–3021 (2023). PubMed DOI PMC

Iacobucci, C. et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nat. Protoc. 13, 2864–2889 (2018). PubMed DOI

Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998). PubMed DOI

Wang, J. et al. TPLATE complex-dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance. EMBO Rep. 24, e54709 (2023). PubMed DOI PMC

Dejonghe, W. et al. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat. Chem. Biol. 15, 641–649 (2019). PubMed DOI PMC

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed DOI PMC

Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016). PubMed DOI

Gilles, J. F., Dos Santos, M., Boudier, T., Bolte, S. & Heck, N. DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis. Methods 115, 55–64 (2017). PubMed DOI

Babbey, C. M. et al. Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby Canine Kidney cells. Mol. Biol. Cell 17, 3156–3175 (2006). PubMed DOI PMC

Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020). PubMed DOI PMC

Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019). PubMed DOI PMC

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed DOI

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed DOI

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). PubMed DOI PMC

Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019). PubMed DOI PMC

Webb, B. et al. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci. 27, 245–258 (2018). PubMed DOI

Shi, Y. et al. A strategy for dissecting the architectures of native macromolecular assemblies. Nat. Methods 12, 1135–1138 (2015). PubMed DOI PMC

Abraham, M. J. et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). DOI

De Jong, D. H. et al. Improved parameters for the Martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 (2013). PubMed DOI

Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). PubMed DOI

Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014). PubMed DOI PMC

Periole, X., Cavalli, M., Marrink, S. J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–2543 (2009). PubMed DOI

Herberich, E., Sikorski, J. & Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE 5, e9788 (2010). PubMed DOI PMC

Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023). PubMed DOI PMC

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed DOI

Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017). PubMed DOI PMC

Pleskot, R. Integrative structure of the endocytic TPLATE complex. Zenodo https://doi.org/10.5281/zenodo.16362990 (2025).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...