Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36376753
DOI
10.1038/s41477-022-01269-w
PII: 10.1038/s41477-022-01269-w
Knihovny.cz E-zdroje
- MeSH
- cukerné fosfáty * metabolismus MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostliny metabolismus MeSH
- signální transdukce MeSH
- trehalosa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cukerné fosfáty * MeSH
- protein-serin-threoninkinasy MeSH
- proteiny huseníčku * MeSH
- trehalosa MeSH
The central metabolic regulator SnRK1 controls plant growth and survival upon activation by energy depletion, but detailed molecular insight into its regulation and downstream targets is limited. Here we used phosphoproteomics to infer the sucrose-dependent processes targeted upon starvation by kinases as SnRK1, corroborating the relation of SnRK1 with metabolic enzymes and transcriptional regulators, while also pointing to SnRK1 control of intracellular trafficking. Next, we integrated affinity purification, proximity labelling and crosslinking mass spectrometry to map the protein interaction landscape, composition and structure of the SnRK1 heterotrimer, providing insight in its plant-specific regulation. At the intersection of this multi-dimensional interactome, we discovered a strong association of SnRK1 with class II T6P synthase (TPS)-like proteins. Biochemical and cellular assays show that TPS-like proteins function as negative regulators of SnRK1. Next to stable interactions with the TPS-like proteins, similar intricate connections were found with known regulators, suggesting that plants utilize an extended kinase complex to fine-tune SnRK1 activity for optimal responses to metabolic stress.
Ghent University Department of Plant Biotechnology and Bioinformatics Ghent Belgium
Institute of Experimental Botany Czech Academy of Sciences Prague Czech Republic
KU Leuven Plant Institute LPI Heverlee Leuven Belgium
Laboratory for Molecular Plant Biology Biology Department KU Leuven Heverlee Leuven Belgium
Zobrazit více v PubMed
Broeckx, T., Hulsmans, S. & Rolland, F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J. Exp. Bot. 67, 6215–6252 (2016). PubMed DOI
Baena-González, E. & Hanson, J. Shaping plant development through the SnRK1–TOR metabolic regulators. Curr. Opin. Plant Biol. 35, 152–157 (2017). PubMed DOI
Rodriguez, M., Parola, R., Andreola, S., Pereyra, C. & Martínez-Noël, G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the “yin-yang” model? Plant Sci. 288, 110220 (2019). PubMed DOI
Tsai, A. Y.-L. & Gazzarrini, S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front. Plant Sci. 5, 119 (2014). PubMed DOI PMC
Paul, M. J., Oszvald, M., Jesus, C., Rajulu, C. & Griffiths, C. A. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast–famine mechanism in cereals for better source–sink optimization. J. Exp. Bot. 68, 4455–4462 (2017). PubMed DOI
Fichtner, F. & Lunn, J. E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annu. Rev. Plant Biol. 72, 737–760 (2021). PubMed DOI
Crepin, N. & Rolland, F. SnRK1 activation, signaling, and networking for energy homeostasis. Curr. Opin. Plant Biol. 51, 29–36 (2019). PubMed DOI
Emanuelle, S. et al. SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant J. 82, 183–192 (2015). PubMed DOI
Ramon, M. et al. The hybrid four-CBS-domain KINβγ subunit functions as the canonical gamma subunit of the plant energy sensor SnRK1. Plant J. 75, 11–25 (2013). PubMed DOI PMC
Baena-González, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942 (2007). PubMed DOI
Zhang, Y. et al. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149, 1860–1871 (2009). PubMed DOI PMC
Baena-González, E. & Lunn, J. E. SnRK1 and trehalose 6-phosphate—two ancient pathways converge to regulate plant metabolism and growth. Curr. Opin. Plant Biol. 55, 52–59 (2020). PubMed DOI
Jamsheer K, M., Kumar, M. & Srivastava, V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. J. Exp. Bot. 72, 6042–6065 (2021). PubMed DOI
Nukarinen, E. et al. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci. Rep. 6, 31697 (2016). PubMed DOI PMC
Cho, H.-Y., Wen, T.-N., Wang, Y.-T. & Shih, M.-C. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J. Exp. Bot. 67, 2745–2760 (2016). PubMed DOI PMC
Jamsheer K, M., Jindal, S. & Laxmi, A. Evolution of TOR–SnRK dynamics in green plants and its integration with phytohormone signaling networks. J. Exp. Bot. 70, 2239–2259 (2019). PubMed DOI
Lin, C.-R. et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source–sink communication in cereal seedlings under abiotic stress. Plant Cell 26, 808–827 (2014). PubMed DOI PMC
Van Leene, J. et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327 (2019). PubMed DOI
Mair, A. et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 4, e05828 (2015). DOI PMC
Dröge-Laser, W. & Weiste, C. The C/S PubMed DOI
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009). PubMed DOI PMC
Chou, M. F. & Schwartz, D. Biological sequence motif discovery using motif-x. Curr. Protoc. Bioinformatics 35, 13.15.11–13.15.24 (2011).
Ramon, M. et al. Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development. Plant Cell 31, 1614–1632 (2019). PubMed DOI PMC
Morita, R., Sugino, M., Hatanaka, T., Misoo, S. & Fukayama, H. CO PubMed DOI PMC
Block-Schmidt, A. S., Dukowic-Schulze, S., Wanieck, K., Reidt, W. & Puchta, H. BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana. Nucleic Acids Res. 39, 146–154 (2011). PubMed DOI
Banko, M. R. et al. Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol. Cell 44, 878–892 (2011). PubMed DOI PMC
Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science 333, 601–607 (2011). DOI PMC
Rao, X. S. et al. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ. 28, 3214–3234 (2021). PubMed DOI
Ducommun, S. et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal 57, 45–57 (2019). PubMed DOI
Rahmani, S., Defferrari, M. S., Wakarchuk, W. W. & Antonescu, C. N. Energetic adaptations: metabolic control of endocytic membrane traffic. Traffic 20, 912–931 (2019). PubMed DOI
Chauhan, A. S., Zhuang, L. & Gan, B. Spatial control of AMPK signaling at subcellular compartments. Crit. Rev. Biochem. Mol. Biol. 55, 17–32 (2020). PubMed DOI PMC
Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020). PubMed DOI PMC
Van Leene, J. et al. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of cprotein complexes. Nat. Protoc. 10, 169–187 (2015). PubMed DOI
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014). DOI
Liu, X., Salokas, K., Weldatsadik, R. G., Gawriyski, L. & Varjosalo, M. Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc. 15, 3182–3211 (2020). PubMed DOI
Lunn, J. E. Gene families and evolution of trehalose metabolism in plants. Funct. Plant Biol. 34, 550–563 (2007). PubMed DOI
Harthill, J. E. et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J. 47, 211–223 (2006). PubMed DOI
Ramon, M. et al. Extensive expression regulation and lack of heterologous enzymatic activity of the class II trehalose metabolism proteins from Arabidopsis thaliana. Plant Cell Environ. 32, 1015–1032 (2009). PubMed DOI
Xiao, S., Jiang, L., Wang, C. & Ow, D. W. SnRK1 regulates chromatin-associated OXS3 family proteins localization through phosphorylation in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 533, 526–532 (2020). PubMed DOI
Fu, X., Yang, H., Pangestu, F. & Nikolau, B. J. Failure to maintain acetate homeostasis by acetate-activating enzymes impacts plant development. Plant Physiol. 182, 1256–1271 (2020). PubMed DOI
Bassel, G. W. et al. Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl Acad. Sci. USA 108, 9709–9714 (2011). PubMed DOI PMC
Gissot, L. et al. AKINβγ contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. Plant Physiol. 142, 931–944 (2006). PubMed DOI PMC
Avila, J. et al. The β-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3. Plant Physiol. 159, 1277–1290 (2012). PubMed DOI PMC
Crozet, P. et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front. Plant Sci. 5, 190 (2014). PubMed DOI PMC
Shin, J. et al. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. Plant Cell Environ. 40, 997–1008 (2017). PubMed DOI
Bruns, A. N., Li, S., Mohannath, G. & Bisaro, D. M. Phosphorylation of Arabidopsis eIF4E and eIFiso4E by SnRK1 inhibits translation. FEBS J. 286, 3778–3796 (2019). PubMed DOI PMC
Huang, C. K. et al. A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. Plant Mol. Biol. 88, 269–286 (2015). PubMed DOI
Lu, D., Wang, T., Persson, S., Mueller-Roeber, B. & Schippers, J. H. Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. Nat. Commun. 5, 3767 (2014). PubMed DOI
Pedrotti, L. et al. Snf1-RELATED KINASE1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. Plant Cell 30, 495–509 (2018). PubMed DOI PMC
Isner, J.-C. et al. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness. N. Phytol. 215, 1059–1067 (2017). DOI
Wang, P., Richardson, C., Hawes, C. & Hussey, P. J. Arabidopsis NAP1 regulates the formation of autophagosomes. Curr. Biol. 26, 2060–2069 (2016). PubMed DOI
Obayashi, T., Aoki, Y., Tadaka, S., Kagaya, Y. & Kinoshita, K. ATTED-II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index. Plant Cell Physiol. 59, e3 (2018). PubMed DOI
Tominaga, M. & Nakano, A. Plant-specific myosin XI, a molecular perspective. Front. Plant Sci. 3, 211 (2012). PubMed DOI PMC
Smits, A. H., Jansen, P. W. C., Poser, I., Hyman, A. A. & Vermeulen, M. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res. 41, e28 (2013). PubMed DOI
Wang, Y. et al. AKINβ1, a subunit of SnRK1, regulates organic acid metabolism and acts as a global modulator of genes involved in carbon, lipid, and nitrogen metabolism. J. Exp. Bot. 71, 1010–1028 (2020). PubMed
Pierre, M. et al. N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19, 2804–2821 (2007). PubMed DOI PMC
Polge, C., Jossier, M., Crozet, P., Gissot, L. & Thomas, M. β-subunits of the SnRK1 complexes share a common ancestral function together with expression and function specificities; physical interaction with nitrate reductase specifically occurs via AKINβ1-subunit. Plant Physiol. 148, 1570–1582 (2008). PubMed DOI PMC
Russel, D. et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012). PubMed DOI PMC
Yperman, K. et al. Molecular architecture of the endocytic TPLATE complex. Sci. Adv. 7, eabe7999 (2021). PubMed DOI PMC
Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019). PubMed DOI PMC
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021). PubMed DOI PMC
Viswanath, S., Chemmama, I. E., Cimermancic, P. & Sali, A. Assessing exhaustiveness of stochastic sampling for integrative modeling of macromolecular structures. Biophys. J. 113, 2344–2353 (2017). PubMed DOI PMC
Li, X. et al. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 25, 50–66 (2015). PubMed DOI
Scholz, R. et al. Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain αG-helix. J. Biol. Chem. 284, 27425–27437 (2009). PubMed DOI PMC
Reyes, F. et al. The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J. 61, 423–435 (2010). PubMed DOI
Klein, M.-C. et al. AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nat. Commun. 9, 3489 (2018). PubMed DOI PMC
Jamsheer, K. M. et al. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J. 94, 232–245 (2018). DOI
Deroover, S., Ghillebert, R., Broeckx, T., Winderickx, J. & Rolland, F. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res. 16, fow036 (2016). PubMed DOI
Muralidhara, P. et al. Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Proc. Natl Acad. Sci. USA 118, e2106961118 (2021). PubMed DOI PMC
Sanagi, M. et al. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2022942118 (2021). PubMed DOI PMC
Tian, L. et al. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana. Plant Cell Rep. 38, 869–882 (2019). PubMed DOI
Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of deorganelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007). PubMed DOI
Bitrian, M., Roodbarkelari, F., Horvath, M. & Koncz, C. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant J. 65, 829–842 (2011). PubMed DOI
Blanco, N. E., Liebsch, D., Guinea Díaz, M., Strand, Å. & Whelan, J. Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1. J. Exp. Bot. 70, 2325–2338 (2019). PubMed DOI
Belda-Palazón, B., Costa, M., Beeckman, T., Rolland, F. & Baena-González, E. ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. Proc. Natl Acad. Sci. USA 119, e2204862119 (2022). PubMed DOI PMC
Forzani, C. et al. Mutations of the AtYAK1 kinase suppress TOR deficiency in Arabidopsis. Cell Rep. 27, 3696–3708 e3695 (2019). PubMed DOI
Ling, N. X. Y. et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat. Metab. 2, 41–49 (2020). PubMed DOI PMC
Yoon, J., Cho, L. H., Tun, W., Jeon, J. S. & An, G. Sucrose signaling in higher plants. Plant Sci. 302, 110703 (2021). PubMed DOI
Rodrigues, A. et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25, 3871–3884 (2013). PubMed DOI PMC
Tsutsui, T., Nakano, A. & Ueda, T. The plant-specific RAB5 GTPase ARA6 is required for starch and sugar homeostasis in Arabidopsis thaliana. Plant Cell Physiol. 56, 1073–1083 (2015). PubMed DOI
Han, C. et al. TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. N. Phytol. 234, 107–121 (2022). DOI
Han, C. et al. TOR promotes guard cell starch degradation by regulating the activity of beta-AMYLASE1 in Arabidopsis. Plant Cell 34, 1038–1053 (2022). PubMed DOI
Zacharaki, V. et al. Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. New Phytol. 235, 220–233 (2022). PubMed DOI PMC
Zhai, Z. et al. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell 30, 2616–2627 (2018). PubMed DOI PMC
Crozet, P. et al. Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities. J. Biol. Chem. 285, 12071–12077 (2010). PubMed DOI PMC
Van Leene, J. et al. Isolation of transcription factor complexes from Arabidopsis cell suspension cultures by tandem affinity purification. Methods Mol. Biol. 754, 195–218 (2011). PubMed DOI
Lampropoulos, A. et al. GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS ONE 8, e83043 (2013). PubMed DOI PMC
Decaestecker, W. et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31, 2868–2887 (2019). PubMed DOI PMC
Vanden Bossche, R., Demedts, B., Vanderhaeghen, R. & Goossens, A. Transient expression assays in tobacco protoplasts. Methods Mol. Biol. 1011, 227–239 (2013). PubMed DOI
Vandesteene, L. et al. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol. 160, 884–896 (2012). PubMed DOI PMC
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). PubMed DOI
Knight, J. D. R. et al. ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat. Methods 14, 645–646 (2017). PubMed DOI PMC
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). PubMed DOI PMC
Grimm, M., Zimniak, T., Kahraman, A. & Herzog, F. xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res. 43, W362–W369 (2015). PubMed DOI PMC
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed DOI
Gadeyne, A. et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156, 691–704 (2014). PubMed DOI
Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014). PubMed DOI
Van Leene, J., Eeckhout, D. & De Jaeger, G. Mapping of the plant SnRK1 kinase signaling network reveals a key regulatory role for the class II T6P synthase-like proteins. figshare https://doi.org/10.6084/m9.figshare.20732371 (2022).
Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants