The myxozoan minicollagen gene repertoire was not simplified by the parasitic lifestyle: computational identification of a novel myxozoan minicollagen gene

. 2021 Mar 20 ; 22 (1) : 198. [epub] 20210320

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33743585

Grantová podpora
19-28399X Grantová Agentura České Republiky

Odkazy

PubMed 33743585
PubMed Central PMC7981951
DOI 10.1186/s12864-021-07515-3
PII: 10.1186/s12864-021-07515-3
Knihovny.cz E-zdroje

BACKGROUND: Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. RESULTS: We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. CONCLUSIONS: The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians.

Zobrazit více v PubMed

Okamura B, Gruhl A, Bartholomew JL. An Introduction to Myxozoan Evolution, Ecology and Development. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development: Switzerland: Springer International Publishing; 2015:1–20. 10.1007/978-3-319-14753-6.

El-Matbouli M, Hoffmann RW, Mandok C. Light and electron-microscopic observations on the route of the triactinomyxon-sporoplasm of Myxobolus cerebralis from epidermis into rainbow trout cartilage. J Fish Biol. 1995;46:919–935.

Gurley RR. The Myxosporidia, or psorosperms of fishes. Report of the commisioner of fish and fisheries 1894;267–302.

Weill R. L'interpretation des cnidosporidies et la valeur taxonomique de leur cnidome. Leur cycle compare a la phase larvaire des narcomeduses cuninides. Trav Stn Zool Wimereux. 1938;13:724–744.

Lom J, Puytorac P. Studies on the myxosporidian ultrastructure and polar capsule development. Protistologica. 1965;1:53–65.

Lom J. Notes on ultrastructure and sporoblast development in fish parasitizing myxosporidian of genus Sphaeromyxa. Z Zellforsch Mikrosk Anat. 1969;97(3):416–437. doi: 10.1007/BF00968848. PubMed DOI

Holland J, Okamura B, Hartikainen H, Secombes C. A novel minicollagen gene links cnidarians and myxozoans. P Roy Sox B-Biol Sci. 2011;278:546–553. PubMed PMC

Khalturin K, Anton-Erxleben F, Sassmann S, Wittlieb J, Hemmrich G, Bosch T. A novel gene family controls species-specific morphological traits in Hydra. PLoS Biol. 2008;6:2436–2449. doi: 10.1371/journal.pbio.0060278. PubMed DOI PMC

Milde S, Hemmrich G, Anton-Erxleben F, Khalturin K, Wittlieb J, Bosch T. Characterization of taxonomically restricted genes in a phylum-restricted cell type. Genome Biol. 2009;10(1):R8. doi: 10.1186/gb-2009-10-1-r8. PubMed DOI PMC

Hwang JS, Takaku Y, Momose T, Adamczyk P, Ozbek S, Ikeo K, Khalturin K, Hemmrich G, Bosch TC, Holstein TW, et al. Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci U S A. 2010;107(43):18539–18544. doi: 10.1073/pnas.1003256107. PubMed DOI PMC

Adamczyk P, Meier S, Gross T, Hobmayer B, Grzesiek S, Bächinger HP, Holstein TW, Ozbek S. Minicollagen-15, a novel minicollagen isolated from Hydra, forms tubule structures in nematocysts. J Mol Biol. 2008;376(4):1008–1020. doi: 10.1016/j.jmb.2007.10.090. PubMed DOI

Tursch A, Mercadante D, Tennigkeit J, Gräter F, Ozbek S. Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules. Sci Rep. 2016;6(1):25709. doi: 10.1038/srep25709. PubMed DOI PMC

David CN, Ozbek S, Adamczyk P, Meier S, Pauly B, Chapman J, Hwang JS, Gojobori T, Holstein TW. Evolution of complex structures: minicollagens shape the cnidarian nematocyst. Trends Genet. 2008;24(9):431–438. doi: 10.1016/j.tig.2008.07.001. PubMed DOI

Kurz E, Holstein T, Petri B, Engel J, David C. Minicollagens in Hydra nematocysts. J Cell Biol. 1991;115(4):1159–1169. doi: 10.1083/jcb.115.4.1159. PubMed DOI PMC

Wang W, Omori M, Hayashibara T, Shimoike K, Hatta M, Sugiyama T, Fujisawa T. Isolation and characterization of a mini-collagen gene encoding a nematocyst capsule protein from a reef-building coral, Acropora donei. Gene. 1995;152(2):195–200. doi: 10.1016/0378-1119(95)00644-L. PubMed DOI

Ozbek S, Pertz O, Schwager M, Lustig A, Holstein T, Engel J. Structure/function relationships in the minicollagen of Hydra nematocysts. J Biol Chem. 2002;277(51):49200–49204. doi: 10.1074/jbc.M209401200. PubMed DOI

Hwang JS, Ohyanagi H, Hayakawa S, Osato N, Nishimiya-Fujisawa C, Ikeo K, David C, Fujisawa T, Gojobori T. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of Hydra. Proc Natl Acad Sci U S A. 2007;104(37):14735–14740. doi: 10.1073/pnas.0703331104. PubMed DOI PMC

Ozbek S, Pokidysheva E, Schwager M, Schulthess T, Tariq N, Barth D, Milbradt A, Moroder L, Engel J, Holstein T. The glycoprotein NOWA and minicollagens are part of a disulfide-linked polymer that forms the cnidarian nematocyst wall. J Biol Chem. 2004;279(50):52016–52023. doi: 10.1074/jbc.M407613200. PubMed DOI

Shpirer E, Chang ES, Diamant A, Rubinstein N, Cartwright P, Huchon D. Diversity and evolution of myxozoan minicollagens and nematogalectins. BMC Evol Biol. 2014;14(1):205. doi: 10.1186/s12862-014-0205-0. PubMed DOI PMC

Cannon C, Wagner E. Comparison of discharge mechanisms of cnidarian Cnidae and Myxozoan polar capsules. Rev Fish Sci Aquac. 2003;11(3):185–219. doi: 10.1080/10641260390244305. DOI

Okamura B, Gruhl A, Reft AJ. Cnidarian Origins of the Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development: Switzerland: Springer International Publishing; 2015:45–68. 10.1007/978-3-319-14753-6.

Foox J, Ringuette M, Desser SS, Siddall ME. In silico hybridization enables transcriptomic illumination of the nature and evolution of Myxozoa. BMC Genomics. 2015;16(1):840. doi: 10.1186/s12864-015-2039-6. PubMed DOI PMC

Americus B, Lotan T, Bartholomew JL, Atkinson SD. A comparison of the structure and function of nematocysts in free-living and par-asitic cnidarians (Myxozoa) Int J Parasitol. 2020;50(10-11):763–769. doi: 10.1016/j.ijpara.2020.04.012. PubMed DOI

Balasubramanian P, Beckmann A, Warnken U, Schnolzer M, Schuler A, Bornberg-Bauer E, Holstein T, Ozbek S. Proteome of Hydra nematocyst. J Biol Che. 2012;287(13):9672–9681. doi: 10.1074/jbc.M111.328203. PubMed DOI PMC

Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The dynamically evolving nematocyst content of an Anthozoan, a scyphozoan, and a hydrozoan. Mol Biol Evol. 2015;32(3):740–753. doi: 10.1093/molbev/msu335. PubMed DOI

Siddall M, Martin D, Bridge D, Desser S, Cone D. The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol. 1995;81(6):961–967. doi: 10.2307/3284049. PubMed DOI

Zrzavý J, Mihulka S, Kepka P, Bezdek A, Tietz D. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics. 1998;14(3):249–285. doi: 10.1111/j.1096-0031.1998.tb00338.x. PubMed DOI

Jimenez-Guri E, Philippe H, Okamura B, Holland P. Buddenbrockia is a cnidarian worm. Science. 2007;317(5834):116–118. doi: 10.1126/science.1142024. PubMed DOI

Nesnidal MP, Helmkampf M, Bruchhaus I, El-Matbouli M, Hausdorf B. Agent of whirling disease meets orphan worm: phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS One. 2013;8(1):e54576. doi: 10.1371/journal.pone.0054576. PubMed DOI PMC

Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A. 2015;112(48):14912–14917. doi: 10.1073/pnas.1511468112. PubMed DOI PMC

Lom J, Dykova I, Feist S. Myxosporea–induced xenoma formation in pike (Esox lucius L) renal corpuscles associated with Myxidium lieberkuehni infection. Eur J Protistol. 1989;24(3):271–280. doi: 10.1016/S0932-4739(89)80064-1. PubMed DOI

Weißenberg R. Mikrosporidien und Chlamydozoen als Zellparasiten von Fischen. Verh Dtsch Zool. 1922;27:41–43.

Debaisieux P. Hypertrophie des cellules animales parasitees par des Cnidosporidies. C R Soc Biol. 1919;82:867–869.

Debaisieux P. Notes sur le Myxidium lieberkuehni Bütsch. Celulle. 1920;30:281–290.

Sokolov S, Volkova E, Kudryavtsev A, Parshukov A. Nephrocystidium pickii Weissenberg, 1921 belongs to Myxozoa (Cnidaria) but is not conspecific with Myxidium lieberkuehni Bütschli, 1882 (Myxozoa: Bivalvulida: Variisporina: Myxidiidae): molecular-genetic evidence. Syst Parasitol. 2019;96(1):15–22. doi: 10.1007/s11230-018-9834-9. PubMed DOI

Cibulskis K, McKenna A, Fennell T, Banks E, DePristo M, Getz G. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics. 2011;27(18):2601–2602. doi: 10.1093/bioinformatics/btr446. PubMed DOI PMC

Lafond-Lapalme J, Duceppe MP, Wang S, Moffett P, Mimee B. A new method for decontamination of de novo transcriptomes using a hierarchical clustering algorithm. Bioinformatics. 2017;33(9):1293–1300. doi: 10.1093/bioinformatics/btw793. PubMed DOI

Simion P, Belkhir K, François C, Veyssier J, Rink JC, Manuel M, Philippe H, Telford MJ. A software tool ‘CroCo’ detects pervasive cross-species contamination in next generation sequencing data. BMC Biol. 2018;16:28. doi: 10.1186/s12915-018-0486-7. PubMed DOI PMC

Piriatinskiy G, Atkinson S, Park S, Morgenstern D, Brekhman V, Yossifon G, Bartholomew J, Lotan T. Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Sci Rep. 2017;7(1):9010. doi: 10.1038/s41598-017-09955-y. PubMed DOI PMC

Khalturin K, Shinzato C, Khalturina M, Hamada M, Fujie M, Koyanagi R, Kanda M, Goto H, Anton-Erxleben F, Toyokawa M, Toshino S, Satoh N. Medusozoan genomes inform the evolution of the jellyfish body plan. Nat Ecol Evol. 2019;3(5):811–822. doi: 10.1038/s41559-019-0853-y. PubMed DOI

Ben-David J, Atkinson SD, Pollak Y, Yossifon G, Shavit U, Bartholomew JL, Lotan T. Myxozoan polar tubules display structural and functional variation. Parasit Vectors. 2016;9(1):549. doi: 10.1186/s13071-016-1819-4. PubMed DOI PMC

Vollrath F. Spiders' webs. Curr Biol. 2005;15(10):R364–R365. doi: 10.1016/j.cub.2005.05.014. PubMed DOI

Barta JR, Martin DS, Liberator PA, Dashkevicz M, Anderson JW, Feighner SD, Elbrecht A, PerkinsBarrow A, Jenkins MC, Danforth HD, et al. Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. J Parasitol. 1997;83(2):262–271. doi: 10.2307/3284453. PubMed DOI

Kent M, Khattra J, Hervio D, Devlin R. Ribosomal DNA sequence analysis of isolates of the PKX myxosporean and their relationship to members of the genus Sphaerospora. J Aquat Anim Health. 1998;10(1):12–21. doi: 10.1577/1548-8667(1998)010<0012:RDSAOI>2.0.CO;2. DOI

Hallett S, Diamant A. Ultrastructure and small-subunit ribosomal DNA sequence of Henneguya lesteri n. sp (Myxosporea), a parasite of sand whiting Sillago analis (Sillaginidae) from the coast of Queensland, Australia. Dis Aquat Org. 2001;46(3):197–212. doi: 10.3354/dao046197. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol. 2009;5(5):e1000386. doi: 10.1371/journal.pcbi.1000386. PubMed DOI PMC

David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2: sensitive yet practical SHort read mapping. Bioinformatics. 2011;27(7):1011–1012. doi: 10.1093/bioinformatics/btr046. PubMed DOI

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45(D1):D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC

Petersen T, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–786. doi: 10.1038/nmeth.1701. PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21(9):2104–2105. doi: 10.1093/bioinformatics/bti263. PubMed DOI

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard M, Huelsenbeck J. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Pokidysheva E, Milbradt A, Meier S, Renner C, Haussinger D, Bachinger H, Moroder L, Grzesiek S, Holstein T, Ozbek S, et al. The structure of the Cys-rich terminal domain of Hydra minicollagen, which is involved in disulfide networks of the nematocyst wall. J Biol Chem. 2004;279(29):30395–30401. doi: 10.1074/jbc.M403734200. PubMed DOI

Milbradt A, Boulegue C, Moroder L, Renner C. The two cysteine-rich head domains of minicollagen from Hydra nematocysts differ in their cystine framework and overall fold despite an identical cysteine sequence pattern. J Mol Biol. 2005;354(3):591–600. doi: 10.1016/j.jmb.2005.09.080. PubMed DOI

Kelley L, Mezulis S, Yates C, Wass M, Sternberg M. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC

Maiti R, Van Domselaar G, Zhang H, Wishart D. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 2004;32:W590–W594. doi: 10.1093/nar/gkh477. PubMed DOI PMC

Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 2001;29(1):221–222. doi: 10.1093/nar/29.1.221. PubMed DOI PMC

Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83–85. doi: 10.1038/356083a0. PubMed DOI

Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evol. 2014;6(12):3182–3198. doi: 10.1093/gbe/evu247. PubMed DOI PMC

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34:W435–W439. doi: 10.1093/nar/gkl200. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...