Persistent mercury hot spot in Central Europe and Skalka Dam reservoir as a long-term mercury trap

. 2020 May ; 42 (5) : 1273-1290. [epub] 20190903

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31482258

Grantová podpora
RVO67985831 Institute of Geology CAS
UJEP-SGS-2018-44-003-3 Univerzite Jan Evangelista Purkyne v Ústí nad Labem

Odkazy

PubMed 31482258
DOI 10.1007/s10653-019-00408-1
PII: 10.1007/s10653-019-00408-1
Knihovny.cz E-zdroje

This study aimed to evaluate the relevance of the floodplain pollution sinks of the legacy mercury (Hg) hot spot in Kössein-Röslau river system (east Bavaria, Germany) for further mobilisation and fluvial transport of mercury in suspended particulate matter (SPM), as an important transport medium of Hg in aquatic systems. The channel belt fluvial erosion as the secondary pollution pathway was also considered. The hot spot has originated from the production of Hg compounds such as C2H5HgCN and C6H5HgCl in Chemical Factory Marktredwitz, and even more than 30 years after the factory abandonment, the Kössein and the Röslau rivers still export polluted fine grained SPM (median 25-35 μm) with mean annual concentrations of 17.4 mg/kg. SPM sampling was performed by floating samplers, supported by floodplain drill cores and by recent channel sediments manually collected along the polluted rivers further. Based on long-term monitoring data set from state enterprise Povodí Ohře, fish in the Skalka Reservoir have had Hg concentrations in their muscles up to 6 mg/kg for at least the last 14 years, exceeding the European maximal limit of 0.5 mg/Hg/kg. In addition, the Hg inventory in the Kössein-Röslau river stretches was therefore calculated; it produced an estimate of ca. 21 t Hg in a 22-km-long channel belt, prone to fluvial remobilisation during floods. Although a major portion of the fluvially transported Hg has yet been trapped by the Skalka Reservoir, the Hg content in the SPM exported farther downstream still varies between 2 and 10 mg/kg Hg. Due to the considerable Hg inventory in the Kössein-Röslau rivers, an improvement will not occur downstream unless specific measures target the secondary pollution mechanism(s).

Zobrazit více v PubMed

Baborowski, M., & Einax, J. W. (2016). Flood-event based metal distribution patterns in water as approach for source apportionment of pollution on catchment scale: Examples from the River Elbe. Journal of Hydrology,535, 429–437. DOI

Baptista-Salazar, C., Richard, J. H., Horf, M., Rejc, M., Gosar, M., & Biester, H. (2017). Grain-size dependence of mercury speciation in river suspended matter, sediments and soils in a mercury mining area at varying hydrological conditions. Applied Geochemistry,81, 132–142. DOI

Berzas Nevado, J. J., Rodríguez Martín-Doimeadios, R. C., & Jiménez Moreno, M. (2009). Mercury speciation in the Valdeazogues River–La Serena Reservoir system: Influence of Almadén (Spain) historic mining activities. Science of the Total Environment,407, 2372–2382. DOI

Biersack, M., & Röder, R. (1999). Mobilität und Mobilisierbarkeit von CFM-spezifischen Stoffen in den Flußauen unterhalb von Marktredwitz. Stadt Marktredwitz: Bodenschutz und Altlastensanierung Marktredwitzer Bodenschutztage,1, 58–62.

Biester, H., & Scholz, C. (1997). Determination of mercury bindings forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environmental Science and Technology,31, 233–239. DOI

Blatná, D. (2014). Application of robust regression and bootstrap in productivity analysis of GERD variable in EU27. Statistika,94, 62–76.

Bravo, A. G., Cosio, C., Amourou, D., Zopfi, J., Chevalley, P. A., Spangenberg, J. E., et al. (2014). Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research,49, 391–405. DOI

Ciszewski, D., & Matys Grygar, T. (2016). A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water, Air, Soil & Pollution,227, 239. DOI

Colica, A., Benvenuti, M., Chiarantini, L., Costagliola, P., Lattanzi, P., Rimondi, V., et al. (2019). From point source to diffuse source of contaminants: The example of mercury dispersion in the Paglia River (Central Italy). CATENA,172, 488–500. DOI

Commission Regulation (EC) No. 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. https://publications.europa.eu/en/publication-detail/-/publication/52b2484d-39e0-4aa9-ba19-4b13a887bb1c/language-en Accessed December 2, 2018.

Cosio, C., Flück, R., Regier, N., & Slaveykova, V. I. (2014). Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry,33, 1225–1237. DOI

Defregger, F. (1995). Remediation of the Marktredwitz Chemical Factory—First experiences of a large-scale washing and distillation plant for mercury contaminated sites in Bavaria. In W. J. Van Den Brink, R. Bosman, & F. Arendt (Eds.), Contaminated Soil ’95. Soil & environment (Vol. 5, pp. 903–910). Dordrecht: Springer. DOI

Dhivert, E., Grosbois, C., Courtin-Nomade, A., Bourrain, X., & Desmet, M. (2016). Dynamics of metallic contaminants at a basin scale—Spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France). Science of the Total Environment,541, 1504–1515. DOI

Dillon, T., Beckvar, N., & Kern, J. (2010). Residue-based mercury dose-response in fish: An analysis using lethality-equivalent test endpoints. Environmental Toxicology and Chemistry,29(11), 2559–2565. DOI

Dušek, L., Svobodová, Z., Janoušková, D., Vykusová, B., Jarkovský, J., Šmíd, R., et al. (2005). Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): multispecies monitoring study 1991–1996. Ecotoxicology and Environmental Safety,61, 256–267. DOI

Faměra, M., Kotková, K., Tůmová, Š., Elznicová, J., & Matys Grygar, T. (2018). Pollution distribution in floodplain structure visualised by electrical resistivity imaging in the floodplain of the Litavka River, The Czech Republic. CATENA,165, 157–172. DOI

Fikarová, J., Kříženecká, S., Elznicová, J., Faměra, M., Lelková, T., Matkovič, J., et al. (2018). Spatial distribution of organic pollutants (PAHs and polar pesticides) in the floodplain of the Ohře (Eger) River, Czech Republic. Journal of Soils and Sediments,18, 259–275. DOI

Fuchsman, P. C., Henning, M. H., Sorensen, M. T., Brown, L. E., Bock, M. J., Beals, C. D., et al. (2016). Critical perspectives on mercury toxicity reference values for protection of fish. Environmental Toxicology and Chemistry,35, 529–549. DOI

Gałuszka, A., Migaszewski, Z. M., & Zalasiewicz, J. (2014). Assessing the Anthropocene with geochemical methods. Geological Society, London, Special Publications,395, 221–238. DOI

Gilli, R. S., Karlen, C., & Weber, M. (2018). Speciation and mobility of mercury in soils contaminated by legacy emissions from a chemical factory in the Rhône Valley in Canton of Valais, Switzerland. Soil Systems,2, 44. DOI

Heaven, S., Ilyushchenko, M. A., Tanton, T. W., Ullrich, S. M., & Yanin, E. P. (2000). Mercury in the River Nura and its floodplain, Central Kazakhstan: I. River sediment and water. Science of the Total Environment,260, 35–44. DOI

Hejtmánek, M., Svobodová, Z., & Studnička, M. (1975). Total mercury content in the musculature of fishes from some dam lakes in Bohemia. Acta Veterinaria Brno,44, 53–58.

Hošek, M., Matys Grygar, T., Elznicová, J., Faměra, M., Popelka, J., Matkovič, J., et al. (2018). Geochemical mapping in polluted floodplains using in situ X-ray fluorescence analysis, geophysical imaging, and statistics: Surprising complexity of floodplain pollution hotspot. CATENA,171, 632–644. DOI

Huber, G. (2008). Remediation of the chemical production facility of Marktredwitz. Final report from Sino-German Workshop REMCOSITE (Remediation of mercury contaminated sites, Guiyang, China, May 27–30, 2008. https://www.grs.de/sites/default/files/pdf/Remcosite_2008_Chemieabfaelle.pdf . Accessed 14 Dec 2018.

Kan-Kilinç, B., & Alpu, O. (2015). Combining some biased estimation methods with least trimmed squares regression and its application. Revista Colombiana de Estadística,38, 485–502. DOI

Kudo, A., & Miyahara, S. (1991). A case-history Minamata mercury pollution in Japan from loss of human lives to decontamination. Water Science Technology,23, 283. https://doi.org/10.2166/wst.1991.0426 . DOI

Lecce, S. A., & Pavlowsky, R. T. (2014). Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology,206, 122–132. DOI

Majerová, L., Bábek, O., Navrátil, T., Nováková, T., Štojdl, J., Elznicová, J., et al. (2018). Dam reservoirs as an efficient trap for historical pollution: the passage of Hg and Pb through the Ohre River, Czech Republic. . Environmental Earth Sciences,77, 574. DOI

Maršálek, P., Svobodová, Z., Randák, T., & Švehla, J. (2005). Mercury and methylmercury contamination of fish from the Skalka Reservoir: a case study. Acta Veterinaria Brno,74, 427–434. DOI

Matys Grygar, T., & Popelka, J. (2016). Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Journal of Geochemical Exploration,170, 39–57. DOI

Matys Grygar, T., Elznicová, J., Kiss, T., & Smith, H. G. (2016). Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena, 144, 109–129. DOI

Miklavčič, A., Mazej, D., Jaćimović, R., Dizdarevič, T., & Horvat, M. (2013). Mercury in food items from the Idrija Mercury Mine area. Environmental Research,125, 61–68. DOI

Mokwe-Ozonzeadi, N., Foster, I., Valsami-Jones, E., & McEldowney, S. (2019). Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-018-2078-0 . DOI

Niimi, A. J., & Kissoon, G. P. (1994). Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Archives of Environmental Contamination and Toxicology,26, 169–178. DOI

Nováková, T., Kotková, K., Elznicová, J., Strnad, L., Engel, Z., & Matys Grygar, T. (2015). Pollutant dispersal and stability in a severely polluted floodplain: A case study in the Litavka River, Czech Republic. Journal of Geochemical Exploration,156, 131–144. DOI

Rimondi, V., Gray, J. E., Costagliola, P., Vaselli, O., & Lattanzi, P. (2012). Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Science of the Total Environment,414, 318–327. DOI

Rousseeuw, P. J., & Van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics,41, 212–223. DOI

Rousseeuw, P. J., & Yohai, V. J. (1984). Robust regression by means of S-estimators. In J. Franke, W. Hardle, & D. Martin (Eds.), Robust and nonlinear time series lecture notes in statistics 26 (pp. 256–272). Berlin: Springer-Verlag. DOI

Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M., Maechler, M. (2015). Robustbase: basic robust statistics. R package version 0.92-5. http://CRAN.R-project.org/package=robustbase , quoted 18. 12. 2018.

Rudnick, R., & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick, H. D. Holland, & K. K. Turekian (Eds.), The Crust. Treatise on Geochemistry (Vol. 3, pp. 1–64). Oxford: Elsevier–Pergamon.

Scerbo, R., Ristori, T., Stefanini, B., De Ranieri, S., & Barghigiani, C. (2005). Mercury assessment and evaluation of its impact on fish in the Cecina river basin (Tuscany, Italy). Environmental Pollution,135, 179–186. DOI

Schulze, T., Ricking, M., Schröter-Kermani, C., Körner, A., Denner, H.-D., Weinfurtner, K., et al. (2007). The German Environmental Specimen Bank-sampling, processing, and archiving sediment and suspended particulate matter. Journal of Soils and Sediments,7, 361–367. DOI

SImetric. (2004). SImetric web page https://www.simetric.co.uk/si_materials.htm . Accessed 10 June 2019.

Titl, F., Doucha, J., Topinková, B., & Orgoň, A. (2011). Rtuť na přítoku do VD Skalka. Vyhodnocení a návrhy opatření (Mercury on inflow to the Skalka Dam Reservoir. Evaluation and proposed measures). Report by AQUATEST, a.s., Prague. https://www.poh.cz/dotacni_tituly/170_studie.pdf . Accessed November 29, 2018.

Tůmová, Š., Hrubešová, D., Vorm, P., & Hošek, M. (2019). Most common flaws in analysis of river sediments polluted by risk elements and how to avoid them: Case study in Ploučnice River system, Czech Republic. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-018-2215-9 . DOI

Ullrich, S. M., Ilyushchenko, M. A., Uskov, G. A., & Tanton, T. W. (2007). Mercury distribution and transport in a contaminated river system in Kazakhstan and associated impacts on aquatic biota. Applied Geochemistry,22, 2706–2734. DOI

Vondrák, L., Břežný, I., & Dobíhal, R. (1984). Problematika znečištění nádrže Skalka rtutí (Pollution of the Skalka Reservoir by mercury). Research Report No. 1/81, Povodí Ohře, Chomutov, 33 pp. Unpublished work, accessible only in the library of POH in Teplice, Accessed December 3, 2018.

Wachs, B. (1999). 30 Jahre Biomonitoring auf Quecksilber im Vorflutersystem des Raumes Marktredwitz. Stadt Marktredwitz: Bodenschutz und Altlastensanierung Marktredwitzer Bodenschutztage,1, 53–57.

Willems, G., & Van Aelst, S. (2005). Fast and robust bootstrap for LTS. Computational Statistics & Data Analysis,48, 703–715. DOI

Xu, L., Zhao, Y. M., Wang, Q., Xie, D. L., Yin, X. B., & Feng, D. Y. (2018). Bioaccumulation characteristics of mercury in fish in the three gorges reservoir, China. Environmental Pollution,243(2018), 115–126. DOI

Yokoyama, H. (2018). Mercury pollution in Minamata. s. 1–67. ISBN 981-10-7391-0. ISSN 2191-5547. DOI

Žibret, G., & Gosar, M. (2006). Calculation of the mercury accumulation in the Idrijca River alluvial plain sediments. Science of the Total Environment,368, 291–297. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...