• This record comes from PubMed

Organization of human replicon: singles or zipping couples?

. 2009 Mar ; 165 (3) : 204-13. [epub] 20081203

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 19063972
PubMed Central PMC2670984
DOI 10.1016/j.jsb.2008.11.004
PII: S1047-8477(08)00268-2
Knihovny.cz E-resources

According to a general paradigm, proper DNA duplication from each replication origin is ensured by two protein complexes termed replisomes. In prokaryotes and in budding yeast Saccharomyces cerevisiae, these two replisomes seem to be associated with one another until DNA replication initiated from the origin has finished. This arrangement results in the formation of the loop of newly synthesized DNA. However, arrangement of replisomes in other eukaryotic organisms including vertebrate cells is largely unknown. Here, we used in vivo labeling of DNA segments in combination with the electron microscopy tomography to describe the organization of replisomes in human HeLa cells. The experiments were devised in order to distinguish between a model of independent replisomes and a model of replisome couples. The comparative analysis of short segments of replicons labeled in pulse-chase experiments of various length shows that replisomes in HeLa cells are organized into the couples during DNA replication. Moreover, our data enabled to suggest a new model of the organization of replicated DNA. According to this model, replisome couples produce loop with the associated arms in the form of four tightly associated 30nm fibers.

See more in PubMed

Adolph K.W. Organization of chromosomes in mitotic HeLa cells. Exp. Cell Res. 1980;125:95–103. PubMed

Baker T.A., Bell S.P. Polymerases and the replisome: machines within machines. Cell. 1998;92:295–305. PubMed

Bazett-Jones D.P., Hendzel M.J. Electron spectroscopic imaging of chromatin. Methods. 1999;17:188–200. PubMed

Belmont A.S., Bruce K. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 1994;127:287–302. PubMed PMC

Belmont A.S., Dietzel S., Nye A.C., Strukov Y.G., Tumbar T. Large-scale chromatin structure and function. Curr. Opin. Cell Biol. 1999;11:307–311. PubMed

Berezney R., Dubey D.D., Huberman J.A. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma. 2000;108:471–484. PubMed

Ciosk R., Zachariae W., Michaelis C., Shevchenko A., Mann M., Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell. 1998;93:1067–1076. PubMed

Dehghani H., Dellaire G., Bazett-Jones D.P. Organization of chromatin in the interphase mammalian cell. Micron. 2005;36:95–108. PubMed

Dimitrova D.S., Gilbert D.M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell. 1999;4:983–993. PubMed

Dingman C.W. Bidirectional chromosome replication: some topological considerations. J. Theor. Biol. 1974;43:187–195. PubMed

Edenberg H.J., Huberman J.A. Eukaryotic chromosome replication. Annu. Rev. Genet. 1975;9:245–284. PubMed

Fox M.H., Arndt-Jovin D.J., Jovin T.M., Baumann P.H., Robert-Nicoud M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci. 1991;99:247–253. PubMed

Gundersen H.J., Bendtsen T.F., Korbo L., Marcussen N., Møller A., Nielsen K., Nyengaard J.R., Pakkenberg B., Sørensen F.B., Vesterby A. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988;96:379–394. PubMed

Hand R. Eucaryotic DNA: organization of the genome for replication. Cell. 1978;15:317–325. PubMed

Hauf S., Waizenegger I.C., Peters J.M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001;293:1320–1323. PubMed

Hozak P., Hassan A.B., Jackson D.A., Cook P.R. Visualization of replication factories attached to nucleoskeleton. Cell. 1993;73:361–373. PubMed

Hyrien O., Mechali M. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of xenopus early embryos. EMBO J. 1993;12:4511–4520. PubMed PMC

Jackson D.A. S-phase progression in synchronized human cells. Exp. Cell Res. 1995;220:62–70. PubMed

Jackson D.A., Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 1998;140:1285–1295. PubMed PMC

Jensen R.B., Wang S.C., Shapiro L. A moving DNA replication factory in Caulobacter crescentus. EMBO J. 2001;20:4952–4963. PubMed PMC

Johnson A., O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 2005;74:283–315. PubMed

Kitamura E., Blow J.J., Tanaka T.U. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell. 2006;125:1297–1308. PubMed PMC

Koberna K., Stanek D., Malinsky J., Eltsov M., Pliss A., Ctrnacta V., Cermanova S., Raska I. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma. 1999;108:325–335. PubMed

Koberna K., Ligasova A., Malinsky J., Pliss A., Siegel A.J., Cvackova Z., Fidlerova H., Masata M., Fialova M., Raska I., Berezney R. Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J. Cell Biochem. 2005;94:126–138. PubMed

Kremer J.R., Mastronarde D.N., McIntosh J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. PubMed

Kurakin A. Self-organization versus watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J. Mol. Recognit. 2007;20:205–214. PubMed

Lau I.F., Filipe S.R., Soballe B., Okstad O.A., Barre F.X., Sherratt D.J. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 2003;49:731–743. PubMed

Lemon K.P., Grossman A.D. Movement of replicating DNA through a stationary replisome. Mol. Cell. 2000;6:1321–1330. PubMed

Leonhardt H., Rahn H.P., Wienzierl P., Sporbert A., Cremer T., Zink D., Cardoso M.C. Dynamics of DNA replication factories in living cells. J. Cell Biol. 2000;149:271–280. PubMed PMC

Ma H., Samarabandu J., Devdhar R.S., Acharya R., Cheng P.C., Meng C., Berezney R. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J. Cell Biol. 1998;143:1415–1425. PubMed PMC

Malinsky J., Koberna K., Stanek D., Masata M., Votruba I., Raska I. The supply of exogenous deoxyribonucleotides accelerates the speed of the replication fork in early S-phase. J. Cell Sci. 2001;114:747–750. PubMed

Manders E.M., Stap J., Brakenhoff G.J., van Driel R., Aten J.A. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 1992;103:857–862. PubMed

Marsden M.P., Laemmli U.K. Metaphase chromosome structure: evidence for a radial loop model. Cell. 1979;17:849–858. PubMed

Masata M., Malínský J., Fidlerová H., Smirnov E., Raska I. Dynamics of replication foci in early S phase as visualized by cross-correlation function. J. Struct. Biol. 2005;151:61–68. PubMed

Mastronarde D.N., Ladinsky M.S., McIntosh J.R. Super-thin sectioning for high-resolution 3-D reconstruction of cellular structures. Proc. Microsc. Microanal. 1997;3:221–222.

McEwen B.F., Marko M. The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 2001;49:553–564. PubMed

Meister P., Taddei A., Gasser S.M. In and out of the replication factory. Cell. 2006;125:1233–1235. PubMed

Migocki M.D., Lewis P.J., Wake R.G., Harry E.J. The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol. Microbiol. 2004;54:452–463. PubMed

Mills A.D., Blow J.J., White J.G., Amos W.B., Wilcock D., Laskey R.A. Replication occurs at discrete foci spaced throughout nuclei replicating in vitro. J. Cell Sci. 1989;94:471–477. PubMed

Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128:787–800. PubMed

Münkel C., Eils R., Dietzel S., Zink D., Mehring C., Wedemann G., Cremer T., Langowski J. Compartmentalization of interphase chromosomes observed in simulation and experiment. J. Mol. Biol. 1999;22:1053–1065. PubMed

Nakajima M., Kumada K., Hatakeyama K., Noda T., Peters J.-M., Hirota T. The complete removal of cohesin from chromosome arms depends on separase. J. Cell Sci. 2007;120:4188–4196. PubMed

Nakamura H., Morita T., Sato C. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 1986;165:291–297. PubMed

Nakayasu H., Berezney R. Mapping replicational sites in the eucaryotic cell nucleus. J. Cell Biol. 1989;108:1–11. PubMed PMC

Nasmyth K., Peters J.-M., Uhlmann F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science. 2000;288:1379–1384. PubMed

O’Keefe R.T., Henderson S.C., Spector D.L. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 1992;116:1095–1110. PubMed PMC

Paulson J.R., Laemmli U.K. The structure of histone-depleted metaphase chromosomes. Cell. 1977;12:817–828. PubMed

Rieder C.L., Cole R. Chromatid cohesion during mitosis: lessons from meiosis. J. Cell Sci. 1999;112:2607–2613. PubMed

Tomilin N., Solovjeva L., Krutilina R., Chamberland C., Hancock R., Vig B. Visualization of elementary DNA replication units in human nuclei corresponding in size to DNA loop domains. Chromosome Res. 1995;3:32–40. PubMed

Uhlmann F., Lottspeich F., Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400:37–42. PubMed

Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 1998;67:721–751. PubMed

Wagner G., Bancaud A., Quivy J.P., Clapier C., Almouzni G., Viovy J.L. Compaction kinetics on single DNAs: purified nucleosome reconstitution systems versus crude extract. Biophys. J. 2005;89:3647–3659. PubMed PMC

Yokota H., van den Engh G., Hearst J.E., Sachs R.K., Trask B.J. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J. Cell Biol. 1995;130:1239–1249. PubMed PMC

Yurov Y.B., Liapunova N.A. The units of DNA replication in the mammalian chromosomes: evidence for a large size of replication units. Chromosoma. 1977;60:253–267. PubMed

Zieve G.W., Turnbull D., Mullins J.M., McIntosh J.R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp. Cell Res. 1980;126:397–405. PubMed

Zink D. The temporal program of DNA replication: new insights into old questions. Chromosoma. 2006;115:273–287. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

The kinetics of uracil-N-glycosylase distribution inside replication foci

. 2025 Jan 24 ; 15 (1) : 3026. [epub] 20250124

Strengths and Weaknesses of Cell Synchronization Protocols Based on Inhibition of DNA Synthesis

. 2021 Oct 05 ; 22 (19) : . [epub] 20211005

DNA Replication: From Radioisotopes to Click Chemistry

. 2018 Nov 17 ; 23 (11) : . [epub] 20181117

Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2'-deoxyuridine, low concentration of hydrochloric acid and exonuclease III

. 2017 ; 12 (4) : e0175880. [epub] 20170420

Looking for ugly ducklings: The role of the stability of BrdU-antibody complex and the improved method of the detection of DNA replication

. 2017 ; 12 (3) : e0174893. [epub] 20170330

The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2'-Deoxyuridine in Cellular DNA under Various Conditions

. 2015 ; 10 (7) : e0132393. [epub] 20150710

Atomic scissors: a new method of tracking the 5-bromo-2'-deoxyuridine-labeled DNA in situ

. 2012 ; 7 (12) : e52584. [epub] 20121226

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...