Organization of human replicon: singles or zipping couples?
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
19063972
PubMed Central
PMC2670984
DOI
10.1016/j.jsb.2008.11.004
PII: S1047-8477(08)00268-2
Knihovny.cz E-resources
- MeSH
- Bromodeoxyuridine metabolism MeSH
- Cell Nucleus metabolism ultrastructure MeSH
- Chromatin physiology ultrastructure MeSH
- Deoxyuracil Nucleotides metabolism MeSH
- DNA-Directed DNA Polymerase chemistry metabolism MeSH
- HeLa Cells MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- Models, Genetic * MeSH
- Multienzyme Complexes chemistry metabolism MeSH
- Image Processing, Computer-Assisted MeSH
- DNA Replication physiology MeSH
- Replicon genetics MeSH
- Electron Microscope Tomography MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bromodeoxyuridine MeSH
- Chromatin MeSH
- Deoxyuracil Nucleotides MeSH
- DNA synthesome MeSH Browser
- DNA-Directed DNA Polymerase MeSH
- Multienzyme Complexes MeSH
According to a general paradigm, proper DNA duplication from each replication origin is ensured by two protein complexes termed replisomes. In prokaryotes and in budding yeast Saccharomyces cerevisiae, these two replisomes seem to be associated with one another until DNA replication initiated from the origin has finished. This arrangement results in the formation of the loop of newly synthesized DNA. However, arrangement of replisomes in other eukaryotic organisms including vertebrate cells is largely unknown. Here, we used in vivo labeling of DNA segments in combination with the electron microscopy tomography to describe the organization of replisomes in human HeLa cells. The experiments were devised in order to distinguish between a model of independent replisomes and a model of replisome couples. The comparative analysis of short segments of replicons labeled in pulse-chase experiments of various length shows that replisomes in HeLa cells are organized into the couples during DNA replication. Moreover, our data enabled to suggest a new model of the organization of replicated DNA. According to this model, replisome couples produce loop with the associated arms in the form of four tightly associated 30nm fibers.
See more in PubMed
Adolph K.W. Organization of chromosomes in mitotic HeLa cells. Exp. Cell Res. 1980;125:95–103. PubMed
Baker T.A., Bell S.P. Polymerases and the replisome: machines within machines. Cell. 1998;92:295–305. PubMed
Bazett-Jones D.P., Hendzel M.J. Electron spectroscopic imaging of chromatin. Methods. 1999;17:188–200. PubMed
Belmont A.S., Bruce K. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 1994;127:287–302. PubMed PMC
Belmont A.S., Dietzel S., Nye A.C., Strukov Y.G., Tumbar T. Large-scale chromatin structure and function. Curr. Opin. Cell Biol. 1999;11:307–311. PubMed
Berezney R., Dubey D.D., Huberman J.A. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma. 2000;108:471–484. PubMed
Ciosk R., Zachariae W., Michaelis C., Shevchenko A., Mann M., Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell. 1998;93:1067–1076. PubMed
Dehghani H., Dellaire G., Bazett-Jones D.P. Organization of chromatin in the interphase mammalian cell. Micron. 2005;36:95–108. PubMed
Dimitrova D.S., Gilbert D.M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell. 1999;4:983–993. PubMed
Dingman C.W. Bidirectional chromosome replication: some topological considerations. J. Theor. Biol. 1974;43:187–195. PubMed
Edenberg H.J., Huberman J.A. Eukaryotic chromosome replication. Annu. Rev. Genet. 1975;9:245–284. PubMed
Fox M.H., Arndt-Jovin D.J., Jovin T.M., Baumann P.H., Robert-Nicoud M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci. 1991;99:247–253. PubMed
Gundersen H.J., Bendtsen T.F., Korbo L., Marcussen N., Møller A., Nielsen K., Nyengaard J.R., Pakkenberg B., Sørensen F.B., Vesterby A. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988;96:379–394. PubMed
Hand R. Eucaryotic DNA: organization of the genome for replication. Cell. 1978;15:317–325. PubMed
Hauf S., Waizenegger I.C., Peters J.M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001;293:1320–1323. PubMed
Hozak P., Hassan A.B., Jackson D.A., Cook P.R. Visualization of replication factories attached to nucleoskeleton. Cell. 1993;73:361–373. PubMed
Hyrien O., Mechali M. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of xenopus early embryos. EMBO J. 1993;12:4511–4520. PubMed PMC
Jackson D.A. S-phase progression in synchronized human cells. Exp. Cell Res. 1995;220:62–70. PubMed
Jackson D.A., Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 1998;140:1285–1295. PubMed PMC
Jensen R.B., Wang S.C., Shapiro L. A moving DNA replication factory in Caulobacter crescentus. EMBO J. 2001;20:4952–4963. PubMed PMC
Johnson A., O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 2005;74:283–315. PubMed
Kitamura E., Blow J.J., Tanaka T.U. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell. 2006;125:1297–1308. PubMed PMC
Koberna K., Stanek D., Malinsky J., Eltsov M., Pliss A., Ctrnacta V., Cermanova S., Raska I. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma. 1999;108:325–335. PubMed
Koberna K., Ligasova A., Malinsky J., Pliss A., Siegel A.J., Cvackova Z., Fidlerova H., Masata M., Fialova M., Raska I., Berezney R. Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J. Cell Biochem. 2005;94:126–138. PubMed
Kremer J.R., Mastronarde D.N., McIntosh J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. PubMed
Kurakin A. Self-organization versus watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry. J. Mol. Recognit. 2007;20:205–214. PubMed
Lau I.F., Filipe S.R., Soballe B., Okstad O.A., Barre F.X., Sherratt D.J. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 2003;49:731–743. PubMed
Lemon K.P., Grossman A.D. Movement of replicating DNA through a stationary replisome. Mol. Cell. 2000;6:1321–1330. PubMed
Leonhardt H., Rahn H.P., Wienzierl P., Sporbert A., Cremer T., Zink D., Cardoso M.C. Dynamics of DNA replication factories in living cells. J. Cell Biol. 2000;149:271–280. PubMed PMC
Ma H., Samarabandu J., Devdhar R.S., Acharya R., Cheng P.C., Meng C., Berezney R. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J. Cell Biol. 1998;143:1415–1425. PubMed PMC
Malinsky J., Koberna K., Stanek D., Masata M., Votruba I., Raska I. The supply of exogenous deoxyribonucleotides accelerates the speed of the replication fork in early S-phase. J. Cell Sci. 2001;114:747–750. PubMed
Manders E.M., Stap J., Brakenhoff G.J., van Driel R., Aten J.A. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 1992;103:857–862. PubMed
Marsden M.P., Laemmli U.K. Metaphase chromosome structure: evidence for a radial loop model. Cell. 1979;17:849–858. PubMed
Masata M., Malínský J., Fidlerová H., Smirnov E., Raska I. Dynamics of replication foci in early S phase as visualized by cross-correlation function. J. Struct. Biol. 2005;151:61–68. PubMed
Mastronarde D.N., Ladinsky M.S., McIntosh J.R. Super-thin sectioning for high-resolution 3-D reconstruction of cellular structures. Proc. Microsc. Microanal. 1997;3:221–222.
McEwen B.F., Marko M. The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 2001;49:553–564. PubMed
Meister P., Taddei A., Gasser S.M. In and out of the replication factory. Cell. 2006;125:1233–1235. PubMed
Migocki M.D., Lewis P.J., Wake R.G., Harry E.J. The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol. Microbiol. 2004;54:452–463. PubMed
Mills A.D., Blow J.J., White J.G., Amos W.B., Wilcock D., Laskey R.A. Replication occurs at discrete foci spaced throughout nuclei replicating in vitro. J. Cell Sci. 1989;94:471–477. PubMed
Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128:787–800. PubMed
Münkel C., Eils R., Dietzel S., Zink D., Mehring C., Wedemann G., Cremer T., Langowski J. Compartmentalization of interphase chromosomes observed in simulation and experiment. J. Mol. Biol. 1999;22:1053–1065. PubMed
Nakajima M., Kumada K., Hatakeyama K., Noda T., Peters J.-M., Hirota T. The complete removal of cohesin from chromosome arms depends on separase. J. Cell Sci. 2007;120:4188–4196. PubMed
Nakamura H., Morita T., Sato C. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 1986;165:291–297. PubMed
Nakayasu H., Berezney R. Mapping replicational sites in the eucaryotic cell nucleus. J. Cell Biol. 1989;108:1–11. PubMed PMC
Nasmyth K., Peters J.-M., Uhlmann F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science. 2000;288:1379–1384. PubMed
O’Keefe R.T., Henderson S.C., Spector D.L. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 1992;116:1095–1110. PubMed PMC
Paulson J.R., Laemmli U.K. The structure of histone-depleted metaphase chromosomes. Cell. 1977;12:817–828. PubMed
Rieder C.L., Cole R. Chromatid cohesion during mitosis: lessons from meiosis. J. Cell Sci. 1999;112:2607–2613. PubMed
Tomilin N., Solovjeva L., Krutilina R., Chamberland C., Hancock R., Vig B. Visualization of elementary DNA replication units in human nuclei corresponding in size to DNA loop domains. Chromosome Res. 1995;3:32–40. PubMed
Uhlmann F., Lottspeich F., Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400:37–42. PubMed
Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 1998;67:721–751. PubMed
Wagner G., Bancaud A., Quivy J.P., Clapier C., Almouzni G., Viovy J.L. Compaction kinetics on single DNAs: purified nucleosome reconstitution systems versus crude extract. Biophys. J. 2005;89:3647–3659. PubMed PMC
Yokota H., van den Engh G., Hearst J.E., Sachs R.K., Trask B.J. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J. Cell Biol. 1995;130:1239–1249. PubMed PMC
Yurov Y.B., Liapunova N.A. The units of DNA replication in the mammalian chromosomes: evidence for a large size of replication units. Chromosoma. 1977;60:253–267. PubMed
Zieve G.W., Turnbull D., Mullins J.M., McIntosh J.R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp. Cell Res. 1980;126:397–405. PubMed
Zink D. The temporal program of DNA replication: new insights into old questions. Chromosoma. 2006;115:273–287. PubMed
The kinetics of uracil-N-glycosylase distribution inside replication foci
Strengths and Weaknesses of Cell Synchronization Protocols Based on Inhibition of DNA Synthesis
DNA Replication: From Radioisotopes to Click Chemistry
Atomic scissors: a new method of tracking the 5-bromo-2'-deoxyuridine-labeled DNA in situ