The Toxic Effect of Toluene on Ovarian Cells Can Be Prevented by the MicroRNA miR-152

. 2024 Nov 15 ; 73 (5) : 791-799.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39545793

The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.

Zobrazit více v PubMed

Lin D, Chen Y, Liang, Huang Z, Guo Y, Cai P, Wang W. Effects of exposure to the explosive and environmental pollutant 2, 4, 6-trinitrotoluene on ovarian follicle development in rats. Environmental Sci Pollut Res. 2023;30:96412–96423. doi: 10.1007/s11356-023-29161-w. PubMed DOI

Sirotkin AV, Harrath AH. Influence of oil-related environmental pollutants on female reproduction. Reprod Toxicol. 2017;71:142–145. doi: 10.1016/j.reprotox.2017.05.007. PubMed DOI

Sirotkin AV, Kolesarova A. Environmental Contaminants and Medicinal Plants Action on Female Reproduction. Academic Press; Cambridge: 2022. p. 436. DOI

Sirotkin AV, Záhoranska Z, Tarko A, Fabova Z, Alwasel S, Harrath AH. A. Plant polyphenols can directly affect ovarian cell functions and modify toluene effects. J Animal Physiol Animal Nutrit. 2021;105:80–89. doi: 10.1111/jpn.13461. PubMed DOI

Sirotkin AV, Kadasi A, Baláži A, Kotwica J, Alrezaki A, Harrath AH. Mechanisms of the direct effects of oil-related contaminants on ovarian cells. Environ Sci Pollut Res. 2020;27:5314–5322. doi: 10.1007/s11356-019-07295-0. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alwasel S, Kotwica J, Harrath AH. Ginkgo, fennel, and flaxseed can affect hormone release by porcine ovarian cells and modulate the effect of toluene. Reprod Biol. 2023;23:100736. doi: 10.1016/j.repbio.2023.100736. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Harrath AH. Can some food/medicinal plants directly affect porcine ovarian granulosa cells and mitigate the toxic effect of toluene? Reprod Dom Animals. 2023;58:1595–1603. doi: 10.1111/rda.14476. PubMed DOI

Song M-K, Ryu J-C. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC) Intern J Hygiene Environ Health. 2015;218:590–602. doi: 10.1016/j.ijheh.2015.06.002. PubMed DOI

Sisto R, Capone P, Cerini L, Paci E, Pigini D, Gherardi M, Gordiani A, et al. Occupational exposure to volatile organic compounds affects microRNA profiling: Towards the identification of novel biomarkers. Toxicol Reports. 2020;7:700–710. doi: 10.1016/j.toxrep.2020.05.006. PubMed DOI PMC

Wang F, Li C, Liu W, Jin Y. Modulation of microRNA expression by volatile organic compounds in mouse lung. Environ Toxicol. 2014;29:679–689. doi: 10.1002/tox.21795. PubMed DOI

Yu SY, Koh EJ, Kim SH, Song B, Lee JS, Son SW, Seo H, Hwang SY. Analysis of multi-omics data on the relationship between epigenetic changes and nervous system disorders caused by exposure to environmentally harmful substances. Environ Toxicol. 2022;37:802–813. doi: 10.1002/tox.23444. PubMed DOI

Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlynček M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223:49–56. doi: 10.1002/jcp.21999. PubMed DOI

Sirotkin AV, Ovcharenko D, Grossmann R, Lauková M, Mlynček M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol. 2009;219:415–420. doi: 10.1002/jcp.21689. PubMed DOI

Fabová Z, Kislíková Z, Loncová B, Bauer M, Harrath A, Sirotkin A. MicroRNA miR-152 can support ovarian granulosa cell functions and modify apigenin actions. Dom Animal Endocrinol. 2023;84:106805. doi: 10.1016/j.domaniend.2023.106805. PubMed DOI

Ligasová A, Frydrych I, Koberna K. Basic Methods of Cell Cycle Analysis. Intern J Molec Sci. 2023;24:3674. doi: 10.3390/ijms24043674. PubMed DOI PMC

Moldovan G-L, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129:665–679. doi: 10.1016/j.cell.2007.05.003. PubMed DOI

Dai Y, Jin F, Wu W, Kumar SK. Cell cycle regulation and hematologic malignancies. Blood Sci. 2019;1:34–43. doi: 10.1097/BS9.0000000000000009. PubMed DOI PMC

Spitz AZ, Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci. 2022;43:206–220. doi: 10.1016/j.tips.2021.11.001. PubMed DOI PMC

Chou C-H, Chen M-J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–175. doi: 10.1016/bs.vh.2018.01.013. PubMed DOI

Sirotkin AV. Regulators of Ovarian Functions. Nova Science Publishers; New York: 2014. p. 210.

Perry SW, Epstein LG, Gelbard HA. In situ trypan blue staining of monolayer cell cultures for permanent fixation and mounting. BioTechniques. 1997;22:1020–1024. doi: 10.2144/97226bm01. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...