Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered?

. 2024 Dec ; 16 (6) : e70040.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39533947

Grantová podpora
Ukrainian State Special-Purpose Research Program in Antarctica for 2011-2025
Natural Environment Research Council (NERC)
22-28778S Czech Science Foundation
RVO 67985904 Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000803 OP RDE
EVA4.0 OP RDE
ANR-20-CE02-0011-01 ANR (Agence Nationale de la Recherche Française)
Scholarship from the National Academy of Sciences of Ukraine for Young Scientists
PAUSE-ANR Ukraine Program

Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates. Wolbachia is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of Wolbachia in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of Wolbachia in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of Wolbachia in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.

Zobrazit více v PubMed

Adams, B.J. , Bardgett, R.D. , Ayres, E. , Wall, D.H. , Aislabie, J. , Bamforth, S.S. et al. (2006) Diversity and distribution of Victoria land biota. Soil Biology and Biochemistry, 38(10), 3003–3018. Available from: 10.1016/j.soilbio.2006.04.030 DOI

Allegrucci, G. , Carchini, G. , Convey, P. & Sbordoni, V. (2012) Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub‐Antarctic islands. Biological Journal of the Linnean Society, 106(2), 258–274. Available from: 10.1111/j.1095-8312.2012.01864.x DOI

Allegrucci, G. , Carchini, G. , Todisco, V. , Convey, P. & Sbordoni, V. (2006) A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biology, 29(4), 320–326. Available from: 10.1007/s00300-005-0056-7 DOI

Allman, M.J. , Fraser, J.E. , Ritchie, S.A. , Joubert, D.A. , Simmons, C.P. & Flores, H.A. (2020) Wolbachia's deleterious impact on Aedes aegypti egg development: the potential role of nutritional parasitism. Insects, 11(11), 735. Available from: 10.3390/insects11110735 PubMed DOI PMC

Altiero, T. , Giovannini, I. , Guidetti, R. & Rebecchi, L. (2015) Life history traits and reproductive mode of the tardigrade Acutuncus antarcticus under laboratory conditions: strategies to colonize the Antarctic environment. Hydrobiologia, 761(1), 277–291. Available from: 10.1007/s10750-015-2315-0 DOI

Andrássy, I. (1998) Nematodes in the sixth continent. Journal of Nematode Morphology and Systematics, 1(2), 107–108.

Andrássy, I. (2008) Eudorylaimus species (Nematoda: Dorylaimida) of continental Antarctica. Journal of Nematode Morphology and Systematics, 11(1), 49–66.

Baldo, L. , Ayoub, N.A. , Hayashi, C.Y. , Russell, J.A. , Stahlhut, J.K. & Werren, J.H. (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Molecular Ecology, 17(2), 557–569. Available from: 10.1111/j.1365-294X.2007.03608.x PubMed DOI

Baldo, L. , Dunning Hotopp, J.C. , Jolley, K.A. , Bordenstein, S.R. , Biber, S.A. , Choudhury, R.R. et al. (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis . Applied and Environmental Microbiology, 72(11), 7098–7110. Available from: 10.1128/AEM.00731-06 PubMed DOI PMC

Bartalos, M. (2018) Long view study No. 35 (Antarctica's hardy Collembola). [Online] California Academy of Sciences. https://www.calacademy.org/blogs/the-long-view/long-view-study-no-35-antarcticas-hardy-collembola

Bénard, A. , Vavre, F. & Kremer, N. (2020) Stress & symbiosis: heads or tails? Frontiers in Ecology and Evolution, 8, 167. Available from: 10.3389/fevo.2020.00167 DOI

Bertolani, R. (2001) Evolution of the reproductive mechanisms in tardigrades: a review. Zoologischer Anzeiger: A Journal of Comparative Zoology, 240(3–4), 247–252. Available from: 10.1078/0044-5231-00032 DOI

Binda, M.G. , Pilato, G. & Lisi, O. (2005) Remarks on Macrobiotus furciger Murray, 1906 and description of three new species of the furciger group (Eutardigrada, Macrobiotidae). Zootaxa, 1075(1), 55–68. Available from: 10.11646/zootaxa.1075.1.3 DOI

Block, W. , Lewis Smith, R.I. & Kennedy, A.D. (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biological Reviews, 84(3), 449–484. Available from: 10.1111/j.1469-185X.2009.00084.x PubMed DOI

Bordenstein, S.R. , Fitch, D.H.A. & Werren, J.H. (2003) Absence of Wolbachia in nonfilariid nematodes. Journal of Nematology, 35(3), 266–270. PubMed PMC

Bourtzis, K. , Dobson, S.L. , Xi, Z. , Rasgon, J.L. , Calvitti, M. , Moreira, L.A. et al. (2014) Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Tropica, 132, S150–S163. Available from: 10.1016/j.actatropica.2013.11.004 PubMed DOI

Braig, H.R. , Guzman, H. , Tesh, R.B. & O'Neill, S.L. (1994) Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature, 367(6462), 453–455. Available from: 10.1038/367453a0 PubMed DOI

Braig, H.R. , Zhou, W. , Dobson, S.L. & O'Neill, S.L. (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis . Journal of Bacteriology, 180(9), 2373–2378. Available from: 10.1128/jb.180.9.2373-2378.1998 PubMed DOI PMC

Brown, A.M.V. , Wasala, S.K. , Howe, D.K. , Peetz, A.B. , Zasada, I.A. & Denver, D.R. (2018) Comparative genomics of Wolbachia–Cardinium dual endosymbiosis in a plant‐parasitic nematode. Frontiers in Microbiology, 9, 2482. Available from: 10.3389/fmicb.2018.02482 PubMed DOI PMC

Brunetti, C. , Siepel, H. , Convey, P. , Fanciulli, P.P. , Nardi, F. & Carapelli, A. (2021a) Overlooked species diversity and distribution in the Antarctic mite genus Stereotydeus . Diversity, 13(10), 506. Available from: 10.3390/d13100506 DOI

Brunetti, C. , Siepel, H. , Fanciulli, P.P. , Nardi, F. , Convey, P. & Carapelli, A. (2021b) Two new species of the mite genus Stereotydeus Berlese, 1901 (Prostigmata: Penthalodidae) from Victoria land, and a key for identification of Antarctic and sub‐Antarctic species. Taxon, 1(2), 116–141. Available from: 10.3390/taxonomy1020010 DOI

Camerota, M. , Simoni, S. , Di Giaimo, R. , Bouneb, M. & Roversi, P.F. (2015) Influences of Wolbachia (Rickettsiales Rickettsiaceae) on the cellular response to cold streb in Drosophila melanogaster (Diptera Drosophilidae). Redia, 98, 145–148.

Campbell, I.B. & Claridge, G.G.C. (1987) Chapter 3 the climate of Antarctica. In: Campbell, I.B. & Claridge, G.G.C. (Eds.) Developments in soil science. Amsterdam: Elsevier, pp. 43–71. Available from: 10.1016/S0166-2481(08)70151-X DOI

Carapelli, A. , Cucini, C. , Fanciulli, P.P. , Frati, F. , Convey, P. & Nardi, F. (2020a) Molecular comparison among three Antarctic endemic springtail species and description of the mitochondrial genome of Friesea gretae (Hexapoda, Collembola). Diversity, 12(12), 450. Available from: 10.3390/d12120450 DOI

Carapelli, A. , Greenslade, P. , Nardi, F. , Leo, C. , Convey, P. , Frati, F. et al. (2020b) Evidence for cryptic diversity in the “Pan‐Antarctic” springtail Friesea Antarctica and the description of two new species. Insects, 11(3), 141. Available from: 10.3390/insects11030141 PubMed DOI PMC

Cavicchioli, R. (2015) Microbial ecology of Antarctic aquatic systems. Nature Reviews Microbiology, 13(11), 691–706. Available from: 10.1038/nrmicro3549 PubMed DOI

Charlesworth, J. , Weinert, L.A. , Araujo, E.V. & Welch, J.J. (2019) Wolbachia, Cardinium and climate: an analysis of global data. Biology Letters, 15(8), 20190273. Available from: 10.1098/rsbl.2019.0273 PubMed DOI PMC

Chown, S.L. , Clarke, A. , Fraser, C.I. , Cary, S.C. , Moon, K.L. & McGeoch, M.A. (2015) The changing form of Antarctic biodiversity. Nature, 522(7557), 431–438. Available from: 10.1038/nature14505 PubMed DOI

Chown, S.L. & Convey, P. (2007) Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1488), 2307–2331. Available from: 10.1098/rstb.2006.1949 PubMed DOI PMC

Chown, S.L. & Convey, P. (2016) Antarctic entomology. Annual Review of Entomology, 61(1), 119–137. Available from: 10.1146/annurev-ento-010715-023537 PubMed DOI

Chrostek, E. , Martins, N. , Marialva, M.S. & Teixeira, L. (2021) Wolbachia‐conferred antiviral protection is determined by developmental temperature. MBio, 12(5), e0292320. Available from: 10.1128/mbio.02923-20 PubMed DOI PMC

Clancy, D.J. & Hoffmann, A.A. (1998) Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia‐infected Drosophila simulans . Entomologia Experimentalis et Applicata, 86(1), 13–24. Available from: 10.1046/j.1570-7458.1998.00261.x DOI

Collins, G.E. , Hogg, I.D. , Convey, P. , Barnes, A.J. & McDonald, I.M. (2019) Spatial and temporal scales matter when assessing the species and genetic diversity of springtails (collembola) in Antarctica. Frontiers in Ecology and Evolution, 7, 76. Available from: 10.3389/fevo.2019.00076 DOI

Collins, G.E. , Hogg, I.D. , Convey, P. , Sancho, L.G. , Cowan, D.A. , Lyons, W.B. et al. (2020) Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic ice sheet. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 22293–22302. Available from: 10.1073/pnas.2007925117 PubMed DOI PMC

Collins, G.E. , Young, M.R. , Convey, P. , Chown, S.L. , Cary, S.C. , Adams, B.J. et al. (2023) Biogeography and genetic diversity of terrestrial mites in the Ross Sea region, Antarctica. Genes (Basel), 14(3), 606. Available from: 10.3390/genes14030606 PubMed DOI PMC

Convey, P. (2017) Antarctic ecosystems. In: Reference module in life sciences. Amsterdam: Elsevier. Available from: 10.1016/B978-0-12-809633-8.02182-8 DOI

Convey, P. & Biersma, E.M. (2024) Antarctic ecosystems. In: Scheiner, S.M. (Ed.) Encyclopedia of biodiversity, Third edition. Oxford: Academic Press, pp. 133–148. Available from: 10.1016/B978-0-12-822562-2.00058-X DOI

Convey, P. , Biersma, E.M. , Casanova‐Katny, A. & Maturana, C.S. (2020) Refuges of Antarctic diversity. In: Oliva, M. & Ruiz‐Fernández, J. (Eds.) Past Antarctica. London: Academic Press, pp. 181–200. Available from: 10.1016/B978-0-12-817925-3.00010-0 DOI

Convey, P. & Block, W. (1996) Antarctic Diptera: ecology, physiology and distribution. European Journal of Entomology, 93(1), 1–13.

Convey, P. , Bowman, V. , Chown, S.L. , Francis, J. , Fraser, C. , Smellie, J.L. et al. (2018) Ice‐bound Antarctica: biotic consequences of the shift from a temperate to a polar climate. In: Hoorn, C. , Perrigo, A. & Antonelli, A. (Eds.) Mountains, climate and biodiversity. Oxford: John Wiley & Sons, pp. 355–373.

Convey, P. , Chown, S.L. , Clarke, A. , Barnes, D.K.A. , Bokhorst, S. , Cummings, V. et al. (2014) The spatial structure of Antarctic biodiversity. Ecological Monographs, 84(2), 203–244. Available from: 10.1890/12-2216.1 DOI

Convey, P. , Gibson, J.A.E. , Hillenbrand, C.‐D. , Hodgson, D.A. , Pugh, P.J.A. , Smellie, J.L. et al. (2008) Antarctic terrestrial life: challenging the history of the frozen continent? Biological Reviews, 83(2), 103–117. Available from: 10.1111/j.1469-185X.2008.00034.x PubMed DOI

Convey, P. , Greenslade, P. , Arnold, R.J. & Block, W. (1999) Collembola of sub‐Antarctic South Georgia. Polar Biology, 22(1), 1–6. Available from: 10.1007/s003000050383 DOI

Convey, P. , Greenslade, P. & Pugh, P.J.A. (2000) The terrestrial micro‐arthropod fauna of the South Sandwich Islands. Journal of Natural History, 34(4), 597–609. Available from: 10.1080/002229300299462 DOI

Convey, P. & McInnes, S.J. (2005) Exceptional tardigrade‐dominated ecosystems in Ellsworth Land, Antarctica. Ecology, 86(2), 519–527. Available from: 10.1890/04-0684 DOI

Convey, P. & Peck, L.S. (2019) Antarctic environmental change and biological responses. Science Advances, 5(11), eaaz0888. Available from: 10.1126/sciadv.aaz0888 PubMed DOI PMC

Convey, P. & Stevens, M.I. (2007) Antarctic biodiversity. Science, 317(5846), 1877–1878. Available from: 10.1126/science.1147261 PubMed DOI

Czarnetzki, A.B. & Tebbe, C.C. (2004) Detection and phylogenetic analysis of Wolbachia in collembola. Environmental Microbiology, 6(1), 35–44. Available from: 10.1046/j.1462-2920.2003.00537.x PubMed DOI

Dartnall, H.J.G. (2017) The freshwater fauna of the south polar region: a 140‐year review. Papers and Proceedings of the Royal Society of Tasmania, 151, 19–57. Available from: 10.26749/rstpp.151.19 DOI

Dartnall, H.J.G. & Hollowday, E.D. (Eds.). (1985) Antarctic rotifers. Cambridge: British Antarctic Survey, p. 46.

Dastych, H. (1984) The Tardigrada from Antarctic with descriptions of several new species. Acta Zoologica Cracoviensia, 27, 377–436.

Dastych, H. (2018) Redescription and revalidation of the sub‐Antarctic tardigrade Hypsibius murrayi (Richters, 1907) based on the rediscovered type material (Tardigrada, Panarthropoda). Entomologie Heute, 30, 95–115.

David, T.W.E. , Priestley, R.E. & Shackleton, E.H. (1910) British Antarctic expedition, 1907–9, under the command of sir E.H. Shackleton, c.v.o. reports on the scientific investigations. London: W. Heinemann. Available from: 10.5962/bhl.title.22427 DOI

Deconninck, G. , Larges, J. , Henri, H. , Beaugeard, L. , Foray, V. & Pincebourde, S. (2024) Wolbachia improves the performance of an invasive fly after a diet shift. Journal of Pest Science, 97, 2087–2099. Available from: 10.1007/s10340-023-01739-w DOI

Dedeine, F. , Vavre, F. , Fleury, F. , Loppin, B. , Hochberg, M.E. & Boulétreau, M. (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 6247–6252. Available from: 10.1073/pnas.101304298 PubMed DOI PMC

Degma, P. & Guidetti, R. (2009. –2023) Actual checklist of Tardigrada species (2009–2023, 42th Edition: 09‐01‐2023). 10.25431/11380_1178608 DOI

Deharveng, L. (1981) Collemboles des Iles Subantarctiques de l'Ocean Indien. Mission J. Travé 1972–1973. Comité National Français des Recherches Antarctiques, 48, 33–109 (In French).

Downie, R.H. , Convey, P. , McInnes, S.J. & Pugh, P.J.A. (2000) The non‐marine invertebrate fauna of Deception Island (maritime Antarctic): a baseline for a comprehensive biodiversity database. Polar Record, 36(199), 297–304. Available from: 10.1017/S0032247400016788 DOI

Edgington, H. , Pavinato, V.A.C. , Spacht, D. , Gantz, J.D. , Convey, P. , Lee, R.E. et al. (2023) Genetic history, structure and gene flow among populations of Belgica Antarctica, the only free‐living insect in the western Antarctic peninsula. Polar Science, 36, 100945. Available from: 10.1016/j.polar.2023.100945 DOI

Elshishka, M. , Lazarova, S. & Peneva, V. (2015) Terrestrial nematodes of Livingston Island, maritime Antarctica. In: Pimpirev, C. & Chipev, N. (Eds.) Bulgarian Antarctic research: a synthesis. Sofia: “St Kliment Ohridski” University Press, pp. 320–334.

Elshishka, M. , Mladenov, A. , Lazarova, S. & Peneva, V. (2023) Terrestrial nematodes from the maritime Antarctic. Biodiversity Data Journal, 11, e102057. Available from: 10.3897/BDJ.11.e102057 PubMed DOI PMC

Enigl, M. & Schausberger, P. (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Experimental and Applied Acarology, 42(2), 75–85. Available from: 10.1007/s10493-007-9080-3 PubMed DOI

Erban, T. , Klimov, P.B. , Smrz, J. , Phillips, T.W. , Nesvorna, M. , Kopecky, J. et al. (2016) Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Frontiers in Microbiology, 7, 1046. Available from: 10.3389/fmicb.2016.01046 PubMed DOI PMC

Evans, N.T. , Li, Y. , Renshaw, M.A. , Olds, B.P. , Deiner, K. , Turner, C.R. et al. (2017) Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 74(9), 1362–1374. Available from: 10.1139/cjfas-2016-0306 DOI

Farnesi, L.C. , Belinato, T.A. , Gesto, J.S.M. , Martins, A.J. , Bruno, R.V. & Moreira, L.A. (2019) Embryonic development and egg viability of wMel‐infected Aedes aegypti . Parasites and Vectors, 12(1), 211. Available from: 10.1186/s13071-019-3474-z PubMed DOI PMC

Fontaneto, D. , Iakovenko, N. & De Smet, W.H. (2015) Diversity gradients of rotifer species richness in Antarctica. Hydrobiologia, 761(1), 235–248. Available from: 10.1007/s10750-015-2258-5 DOI

Foo, I.J.‐H. , Hoffmann, A.A. & Ross, P.A. (2019) Cross‐generational effects of heat stress on fitness and Wolbachia density in Aedes aegypti mosquitoes. Tropical Medicine and Infectious Disease, 4(1), 13. Available from: 10.3390/tropicalmed4010013 PubMed DOI PMC

Frati, F. & Carapelli, A. (1999) An assessment of the value of nuclear and mitochondrial genes in elucidating the origin and evolution of Isotoma klovstadi carpenter (Insecta, collembola). Antarctic Science, 11(2), 160–174. Available from: 10.1017/s0954102099000231 DOI

Gabriel, A.G.A. , Chown, S.L. , Barendse, J. , Marshall, D.J. , Mercer, R.D. , Pugh, P.J.A. et al. (2001) Biological invasions of Southern Ocean islands: the collembola of Marion Island as a test of generalities. Ecography, 24(4), 421–430. Available from: 10.1111/j.1600-0587.2001.tb00477.x DOI

Gilbert, J.J. (2020) Variation in the life cycle of monogonont rotifers: commitment to sex and emergence from diapause. Freshwater Biology, 65(4), 786–810. Available from: 10.1111/fwb.13440 DOI

Gilbert, S.F. , Sapp, J. & Tauber, A.I. (2012) A symbiotic view of life: we have never been individuals. The Quarterly Review of Biology, 87(4), 325–341. Available from: 10.1086/668166 PubMed DOI

Giribet, G. & Edgecombe, G.D. (2012) Reevaluating the arthropod tree of life. Annual Review of Entomology, 57, 167–186. Available from: 10.1146/annurev-ento-120710-100659 PubMed DOI

Gora, N.V. , Serga, S.V. , Maistrenko, O.M. , Ślęzak‐Parnikoza, A. , Parnikoza, І.Y. , Tarasiuk, A.N. et al. (2020) Climate factors and Wolbachia infection frequencies in natural populations of Drosophila melanogaster . Cytology and Genetics, 54(3), 189–198. Available from: 10.3103/S0095452720030044 DOI

Gotoh, T. , Noda, H. & Hong, X.‐Y. (2003) Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity, 91(3), 208–216. Available from: 10.1038/sj.hdy.6800329 PubMed DOI

Greenslade, P. (1995) Collembola from the scotia arc and Antarctic peninsula including descriptions of two new species and notes on biogeography. Polskie Pismo Entomologiczne, 64, 305–319.

Greenslade, P. (2015) Synonymy of two monobasic Anurophorinae genera (Collembola: Isotomidae) from the Antarctic continent. New Zealand Entomologist, 38(2), 134–141. Available from: 10.1080/00779962.2015.1033810 DOI

Greenslade, P. (2018) An Antarctic biogeographical anomaly resolved: the true identity of a widespread species of collembola. Polar Biology, 41(5), 969–981. Available from: 10.1007/s00300-018-2261-1 DOI

Greenslade, P. & Convey, P. (2012) Exotic collembola on subantarctic islands: pathways, origins and biology. Biological Invasions, 14(2), 405–417. Available from: 10.1007/s10530-011-0086-8 DOI

Greenslade, P. , Potapov, M. , Russell, D. & Convey, P. (2012) Global collembola on Deception Island. Journal of Insect Science, 12(1), 111–116. Available from: 10.1673/031.012.11101 PubMed DOI PMC

Greenslade, P. & Wise, K.A.J. (1984) Additions to the collembolan fauna of the Antarctic. Transactions of the Royal Society of South Australia, 108(4), 203–205.

Gressitt, J.L. (1965) Biogeography and ecology of land arthropods of Antarctica. In: van Mieghem, J. & van Oye, P. (Eds.) Biogeography and ecology in Antarctica. Dordrecht: Springer Netherlands, pp. 431–490. Available from: 10.1007/978-94-015-7204-0_14 DOI

Guidetti, R. , McInnes, S.J. , Cesari, M. , Rebecchi, L. & Rota‐Stabelli, O. (2017) Evolutionary scenarios for the origin of an Antarctic tardigrade species based on molecular clock analyses and biogeographic data. Contributions to Zoology, 86(2), 97–110. Available from: 10.1163/18759866-08602001 DOI

Guidetti, R. , Rebecchi, L. , Cesari, M. & McInnes, S.J. (2014) Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biology, 37(9), 1221–1233. Available from: 10.1007/s00300-014-1514-x DOI

Guidetti, R. , Vecchi, M. , Ferrari, A. , Newton, I.L.G. , Cesari, M. & Rebecchi, L. (2020) Further insights in the Tardigrada microbiome: phylogenetic position and prevalence of infection of four new Alphaproteobacteria putative endosymbionts. Zoological Journal of the Linnean Society, 188(3), 925–937. Available from: 10.1093/zoolinnean/zlz128 DOI

Haegeman, A. , Vanholme, B. , Jacob, J. , Vandekerckhove, T.T.M. , Claeys, M. , Borgonie, G. et al. (2009) An endosymbiotic bacterium in a plant‐parasitic nematode: member of a new Wolbachia supergroup. International Journal for Parasitology, 39(9), 1045–1054. Available from: 10.1016/j.ijpara.2009.01.006 PubMed DOI

Hague, M.T.J. , Mavengere, H. , Matute, D.R. & Cooper, B.S. (2020) Environmental and genetic contributions to imperfect wMel‐like Wolbachia transmission and frequency variation. Genetics, 215(4), 1117–1132. Available from: 10.1534/genetics.120.303330 PubMed DOI PMC

Hague, M.T.J. , Shropshire, J.D. , Caldwell, C.N. , Statz, J.P. , Stanek, K.A. , Conner, W.R. et al. (2022) Temperature effects on cellular host‐microbe interactions explain continent‐wide endosymbiont prevalence. Current Biology, 32(4), 878–888.e8. Available from: 10.1016/j.cub.2021.11.065 PubMed DOI PMC

Hahn, M.B. , Hojgaard, A. , Disler, G. , George, W. , Droghini, A. , Schlaht, R. et al. (2023) Ticks and tick‐borne microbes identified through passive and active surveillance in Alaska. Journal of Medical Entomology, 60(5), 1099–1107. Available from: 10.1093/jme/tjad078 PubMed DOI PMC

Hedges, L.M. , Brownlie, J.C. , O'Neill, S.L. & Johnson, K.N. (2008) Wolbachia and virus protection in insects. Science, 322(5902), 702. Available from: 10.1126/science.1162418 PubMed DOI

Henningsson, A.J. , Hvidsten, D. , Kristiansen, B.E. , Matussek, A. , Stuen, S. & Jenkins, A. (2015) Detection of Anaplasma phagocytophilum in Ixodes ricinus ticks from Norway using a realtime PCR assay targeting the Anaplasma citrate synthase gene gltA . BMC Microbiology, 15(1), 153. Available from: 10.1186/s12866-015-0486-5 PubMed DOI PMC

Hoffmann, A.A. & Turelli, M. (1997) Cytoplasmic incompatibility in insects. In: O'Neill, S.L. , Hoffmann, A.A. & Werren, J.H. (Eds.) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford: Oxford University Press, pp. 42–80.

Holmes, C.J. , Jennings, E.C. , Gantz, J.D. , Spacht, D. , Spangler, A.A. , Denlinger, D.L. et al. (2019) The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs. Polar Biology, 42(11), 2075–2085. Available from: 10.1007/s00300-019-02582-5 DOI

Hubert, J. , Nesvorna, M. , Green, S.J. & Klimov, P.B. (2021) Microbial communities of stored product mites: variation by species and population. Microbial Ecology, 81(2), 506–522. Available from: 10.1007/s00248-020-01581-y PubMed DOI

Hubert, J. , Stejskal, V. , Nesvorna, M. , Aulicky, R. , Kopecky, J. & Erban, T. (2016) Differences in the bacterial community of laboratory and wild populations of the predatory mite Cheyletus eruditus (Acarina: Cheyletidae) and bacteria transmission from its prey Acarus siro (Acari: acaridae). Journal of Economic Entomology, 109(3), 1450–1457. Available from: 10.1093/jee/tow032 PubMed DOI

Hughes, K.A. , Greenslade, P. & Convey, P. (2017) The fate of the non‐native Collembolon, Hypogastrura viatica, at the southern extent of its introduced range in Antarctica. Polar Biology, 40(10), 2127–2131. Available from: 10.1007/s00300-017-2121-4 DOI

Hughes, K.A. , Pertierra, L.R. , Molina‐Montenegro, M.A. & Convey, P. (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24(5), 1031–1055. Available from: 10.1007/s10531-015-0896-6 DOI

Hurst, G.D.D. , Jiggins, F.M. & Robinson, S.J.W. (2001) What causes inefficient transmission of male‐killing Wolbachia in Drosophila? Heredity, 87(2), 220–226. Available from: 10.1046/j.1365-2540.2001.00917.x PubMed DOI

Hurst, G.D.D. , Johnson, A.P. , Schulenburg, J.H.G. & Fuyama, Y. (2000) Male‐killing Wolbachia in Drosophila: a temperature‐sensitive trait with a threshold bacterial density. Genetics, 156(2), 699–709. Available from: 10.1093/genetics/156.2.699 PubMed DOI PMC

Hvidsten, D. , Frafjord, K. , Gray, J.S. , Henningsson, A.J. , Jenkins, A. , Kristiansen, B.E. et al. (2020) The distribution limit of the common tick, Ixodes ricinus, and some associated pathogens in north‐western Europe. Ticks and Tick‐Borne Diseases, 11(4), 101388. Available from: 10.1016/j.ttbdis.2020.101388 PubMed DOI

Iakovenko, N.S. , Smykla, J. , Convey, P. , Kašparová, E. , Kozeretska, I.A. , Trokhymets, V. et al. (2015) Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia, 761(1), 5–43. Available from: 10.1007/s10750-015-2463-2 DOI

Jaenike, J. , Stahlhut, J.K. , Boelio, L.M. & Unckless, R.L. (2010) Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Molecular Ecology, 19(2), 414–425. Available from: 10.1111/j.1365-294X.2009.04448.x PubMed DOI

Jenkins, A. , Raasok, C. , Pedersen, B.N. , Jensen, K. , Andreassen, Å. , Soleng, A. et al. (2019) Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiology, 19(1), 199. Available from: 10.1186/s12866-019-1502-y PubMed DOI PMC

Ju, J.‐F. , Bing, X.‐L. , Zhao, D.‐S. , Guo, Y. , Xi, Z. , Hoffmann, A.A. et al. (2020) Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. The ISME Journal, 14(3), 676–687. Available from: 10.1038/s41396-019-0559-9 PubMed DOI PMC

Kaczmarek, Ł. , Janko, K. , Smykla, J. & Michalczyk, Ł. (2014) Soil tardigrades from the Antarctic Peninsula with a description of a new species and some remarks on the genus Ramajendas (Eutardigrada: Isohypsibiidae). Polar Record, 50(2), 176–182. Available from: 10.1017/S0032247413000168 DOI

Kaczmarek, Ł. , Mioduchowska, M. , Kačarević, U. , Kubska, K. , Parnikoza, I. , Gołdyn, B. et al. (2020a) New records of Antarctic Tardigrada with comments on interpopulation variability of the Paramacrobiotus fairbanksi Schill, Förster, Dandekar and Wolf, 2010. Diversity, 12(3), 108. Available from: 10.3390/d12030108 DOI

Kaczmarek, Ł. , Parnikoza, I. , Gawlak, M. , Esefeld, J. , Peter, H.‐U. , Kozeretska, I. et al. (2018) Tardigrades from Larus dominicanus Lichtenstein, 1823 nests on the Argentine islands (maritime Antarctic). Polar Biology, 41(2), 283–301. Available from: 10.1007/s00300-017-2190-4 DOI

Kaczmarek, Ł. , Roszkowska, M. , Poprawa, I. , Janelt, K. , Kmita, H. , Gawlak, M. et al. (2020b) Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from Republic of Madagascar (Africa) with microbiome analysis. Molecular Phylogenetics and Evolution, 145, 106730. Available from: 10.1016/j.ympev.2019.106730 PubMed DOI

Kagoshima, H. , Maslen, R. , Kito, K. , Imura, S. , Niki, H. & Convey, P. (2019) Integrated taxonomy combining morphological and molecular biological analyses of soil nematodes from maritime Antarctica. Polar Biology, 42(5), 877–887. Available from: 10.1007/s00300-019-02482-8 DOI

Kaur, R. , Shropshire, J.D. , Cross, K.L. , Leigh, B. , Mansueto, A.J. , Stewart, V. et al. (2021) Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host and Microbe, 29(6), 879–893. Available from: 10.1016/j.chom.2021.03.006 PubMed DOI PMC

Kihm, J.‐H. , Kim, S. , McInnes, S.J. , Zawierucha, K. , Rho, H.S. , Kang, P. et al. (2020) Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology. Scientific Reports, 10(1), 9122. Available from: 10.1038/s41598-020-65573-1 PubMed DOI PMC

Kim, S. , Oh, M. , Jung, W. , Park, J. , Choi, H.‐G. & Shin, S.C. (2017) Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic peninsula. GigaScience, 6(3), giw009. Available from: 10.1093/gigascience/giw009 PubMed DOI PMC

Kito, K. & Ohyama, Y. (2008) Rhabditid nematodes found from a rocky coast contaminated with treated wastewater of Casey Station in East Antarctica, with a description of a new species of Dolichorhabditis Andrássy, 1983 (Nematoda: Rhabditidae). Zootaxa, 1850, 43–52. Available from: 10.5281/zenodo.183386 DOI

Klimov, P.B. , Chetverikov, P.E. , Dodueva, I.E. , Vishnyakov, A.E. , Bolton, S.J. , Paponova, S.S. et al. (2022) Symbiotic bacteria of the gall‐inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Scientific Reports, 12(1), 3811. Available from: 10.1038/s41598-022-07535-3 PubMed DOI PMC

Konecka, E. (2022) Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). Journal of Invertebrate Pathology, 189, 107733. Available from: 10.1016/j.jip.2022.107733 PubMed DOI

Konecka, E. & Olszanowski, Z. (2019) First evidence of intracellular bacteria Cardinium in thermophilic mite Microzetorchestes emeryi (Acari: Oribatida): molecular screening of bacterial endosymbiont species. Current Microbiology, 76(9), 1038–1044. Available from: 10.1007/s00284-019-01717-5 PubMed DOI PMC

Kriesner, P. , Conner, W.R. , Weeks, A.R. , Turelli, M. & Hoffmann, A.A. (2016) Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution, 70(5), 979–997. Available from: 10.1111/evo.12923 PubMed DOI PMC

Lau, M.‐J. , Ross, P.A. , Endersby‐Harshman, N.M. & Hoffmann, A.A. (2020) Impacts of low temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)‐infected Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 57(5), 1567–1574. Available from: 10.1093/jme/tjaa074 PubMed DOI PMC

Lefoulon, E. , Bain, O. , Makepeace, B.L. , d'Haese, C. , Uni, S. , Martin, C. et al. (2016) Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ, 4, e1840. Available from: 10.7717/peerj.1840 PubMed DOI PMC

Lindsey, A.R.I. , Bordenstein, S.R. , Newton, I.L.G. & Rasgon, J.L. (2016) Wolbachia pipientis should not be split into multiple species: a response to Ramírez‐Puebla et al., “species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups”. Systematic and Applied Microbiology, 39(3), 220–222. Available from: 10.1016/j.syapm.2016.03.001 PubMed DOI PMC

Liu, B. , Ren, Y.‐S. , Su, C.‐Y. , Abe, Y. & Zhu, D.‐H. (2023) Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes. Frontiers in Microbiology, 14, 1084839. Available from: 10.3389/fmicb.2023.1084839 PubMed DOI PMC

Lo, N. , Casiraghi, M. , Salati, E. , Bazzocchi, C. & Bandi, C. (2002) How many Wolbachia supergroups exist? Molecular Biology and Evolution, 19(3), 341–346. Available from: 10.1093/oxfordjournals.molbev.a004087 PubMed DOI

Lukashanets, D.A. , Convey, P. , Borodin, O.I. , Miamin, V.Y. , Hihiniak, Y.H. , Gaydashov, A.A. et al. (2021) Eukarya biodiversity in the Thala Hills, East Antarctica. Antarctic Science, 33(6), 605–623. Available from: 10.1017/S0954102021000328 DOI

Ma, Y. , Chen, W.‐J. , Li, Z.‐H. , Zhang, F. , Gao, Y. & Luan, Y.‐X. (2017) Revisiting the phylogeny of Wolbachia in collembola. Ecology and Evolution, 7(7), 2009–2017. Available from: 10.1002/ece3.2738 PubMed DOI PMC

Mahmood, S. , Nováková, E. , Martinů, J. , Sychra, O. & Hypša, V. (2023) Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts. Microbiome, 11(1), 22. Available from: 10.1186/s40168-023-01462-9 PubMed DOI PMC

Maistrenko, O.M. , Serga, S.V. , Kovalenko, P.A. & Kozeretska, I.A. (2023) Bacteria associated with the Antarctic endemic insect Belgica antarctica Jacobs (Diptera Chironomidae). Cytology and Genetics, 57(3), 207–212. Available from: 10.3103/S0095452723030064 DOI

Manoj, R.R.S. , Latrofa, M.S. , Epis, S. & Otranto, D. (2021) Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasites and Vectors, 14(1), 245. Available from: 10.1186/s13071-021-04742-1 PubMed DOI PMC

Martinez, J. , Ok, S. , Smith, S. , Snoeck, K. , Day, J.P. & Jiggins, F.M. (2015) Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. PLoS Pathogens, 11(7), e1005021. Available from: 10.1371/journal.ppat.1005021 PubMed DOI PMC

Maslen, N.R. & Convey, P. (2006) Nematode diversity and distribution in the southern maritime Antarctic: clues to history? Soil Biology and Biochemistry, 38(10), 3141–3151. Available from: 10.1016/j.soilbio.2005.12.007 DOI

McFall‐Ngai, M. , Hadfield, M.G. , Bosch, T.C.G. , Carey, H.V. , Domazet‐Lošo, T. , Douglas, A.E. et al. (2013) Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3229–3236. Available from: 10.1073/pnas.1218525110 PubMed DOI PMC

McGaughran, A. , Stevens, M.I. & Holland, B.R. (2010) Biogeography of circum‐Antarctic springtails. Molecular Phylogenetics and Evolution, 57(1), 48–58. Available from: 10.1016/j.ympev.2010.06.003 PubMed DOI

McGaughran, A. , Terauds, A. , Convey, P. & Fraser, C.I. (2019) Genome‐wide SNP data reveal improved evidence for Antarctic glacial refugia and dispersal of terrestrial invertebrates. Molecular Ecology, 28(22), 4941–4957. Available from: 10.1111/mec.15269 PubMed DOI

McInnes, S.J. (2010) Echiniscus corrugicaudatus (Heterotardigrada; Echiniscidae) a new species from Ellsworth Land, Antarctica. Polar Biology, 33(1), 59–70. Available from: 10.1007/s00300-009-0684-4 DOI

McQueen, J.P. , Gattoni, K. , Gendron, E.M.S. , Schmidt, S.K. , Sommers, P. & Porazinska, D.L. (2022) Host identity is the dominant factor in the assembly of nematode and tardigrade gut microbiomes in Antarctic Dry Valley streams. Scientific Reports, 12(1), 20118. Available from: 10.1038/s41598-022-24206-5 PubMed DOI PMC

McQueen, J.P. , Gattoni, K. , Gendron, E.M.S. , Schmidt, S.K. , Sommers, P. & Porazinska, D.L. (2023) External and internal microbiomes of Antarctic nematodes are distinct, but more similar to each other than the surrounding environment. Journal of Nematology, 55(1), 20230004. Available from: 10.2478/jofnem-2023-0004 PubMed DOI PMC

Medina, P. , Russell, S.L. & Corbett‐Detig, R. (2023) Deep data mining reveals variable abundance and distribution of microbial reproductive manipulators within and among diverse host species. PLoS One, 18(7), e0288261. Available from: 10.1371/journal.pone.0288261 PubMed DOI PMC

Milanese, A. , Mende, D.R. , Paoli, L. , Salazar, G. , Ruscheweyh, H.‐J. , Cuenca, M. et al. (2019) Microbial abundance, activity and population genomic profiling with mOTUs2. Nature Communications, 10(1), 1014. Available from: 10.1038/s41467-019-08844-4 PubMed DOI PMC

Min, K.‐T. & Benzer, S. (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proceedings of the National Academy of Sciences of the United States of America, 94(20), 10792–10796. Available from: 10.1073/pnas.94.20.10792 PubMed DOI PMC

Mioduchowska, M. , Kačarević, U. , Miamin, V. , Giginiak, Y. , Parnikoza, І. , Roszkowska, M. et al. (2021a) Redescription of Antarctic eutardigrade Dastychius improvisus (Dastych, 1984) and some remarks on phylogenetic relationships within Isohypsibioidea. The European Zoological Journal, 88(1), 117–131. Available from: 10.1080/24750263.2020.1854877 DOI

Mioduchowska, M. , Konecka, E. , Gołdyn, B. , Pinceel, T. , Brendonck, L. , Lukić, D. et al. (2022) Wolbachia enigma: playing peekaboo with a master manipulator. Authorea. Available from: 10.22541/au.164925600.03451482/v1 PubMed DOI PMC

Mioduchowska, M. , Konecka, E. , Gołdyn, B. , Pinceel, T. , Brendonck, L. , Lukić, D. et al. (2023) Playing peekaboo with a master manipulator: metagenetic detection and phylogenetic analysis of Wolbachia supergroups in freshwater invertebrates. International Journal of Molecular Sciences, 24(11), 9400. Available from: 10.3390/ijms24119400 PubMed DOI PMC

Mioduchowska, M. , Nitkiewicz, B. , Roszkowska, M. , Kačarević, U. , Madanecki, P. , Pinceel, T. et al. (2021b) Taxonomic classification of the bacterial endosymbiont Wolbachia based on next‐generation sequencing: is there molecular evidence for its presence in tardigrades? Genome, 64(10), 951–958. Available from: 10.1139/gen-2020-0036 PubMed DOI

Moran, N.A. (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proceedings of the National Academy of Sciences of the United States of America, 104(suppl. 1), 8627–8633. Available from: 10.1073/pnas.0611659104 PubMed DOI PMC

Nelson, D.R. , Guidetti, R. & Rebecchi, L. (2015) Chapter 17: Phylum Tardigrada. In: Thorp, J.H. & Rogers, D.C. (Eds.) Thorp and Covich's freshwater invertebrates, 4th edition. Boston: Academic Press, pp. 347–380. Available from: 10.1016/B978-0-12-385026-3.00017-6 DOI

Nelson, D.R. , Guidetti, R. , Rebecchi, L. , Kaczmarek, Ł. & McInnes, S. (2020) Chapter 15: phylum Tardigrada. In: Rogers, D.C. , Damborenea, C. & Thorp, J.H. (Eds.) Thorp and Covich's freshwater invertebrates, 4th edition. Amsterdam: Academic Press, pp. 505–522. Available from: 10.1016/B978-0-12-804225-0.00015-0 DOI

NeuquaValley . (2021) NV 66 Minges: The Wolbachia project. [Online] The Wolbachia Project Database. https://wolbachiaprojectdb.org/dbpost/2255

Newton, I.L.G. & Rice, D.W. (2020) The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? Journal of Bacteriology, 202(4), e00589‐19. Available from: 10.1128/jb.00589-19 PubMed DOI PMC

Nguyen, D.T. , Spooner‐Hart, R.N. & Riegler, M. (2016) Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biological Invasions, 18(1), 197–214. Available from: 10.1007/s10530-015-1002-4 DOI

Obbels, D. , Verleyen, E. , Mano, M.‐J. , Namsaraev, Z. , Sweetlove, M. , Tytgat, B. et al. (2016) Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud land, East Antarctica. FEMS Microbiology Ecology, 92(6), 1–13. Available from: 10.1093/femsec/fiw041 PubMed DOI

O'Neill, S.L. , Hoffmann, A. & Werren, J. (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford: Oxford University Press, p. 214.

Örstan, A. (1995) Desiccation survival of the eggs of the rotifer Adleta vaga (Davis, 1873). Hydrobiologia, 313(1), 373–375. Available from: 10.1007/BF00025972 DOI

Padde, J.R. , Lu, Q. , Long, Y. , Zhang, D. , Hou, M. , Chen, L. et al. (2023) The impact of environmental and host factors on Wolbachia density and efficacy as a biological tool. Decoding Infection and Transmission, 1, 100006. Available from: 10.1016/j.dcit.2023.100006 DOI

Pascar, J. & Chandler, C.H. (2018) A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ, 6, e5486. Available from: 10.7717/peerj.5486 PubMed DOI PMC

Phillips, L. , Janion‐Scheepers, C. , Houghton, M. , Terauds, A. , Potapov, M. & Chown, S.L. (2017) Range expansion of two invasive springtails on sub‐Antarctic Macquarie Island. Polar Biology, 40(11), 2137–2142. Available from: 10.1007/s00300-017-2129-9 DOI

Pike, N. & Kingcombe, R. (2009) Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida . BMC Biology, 7(1), 54. Available from: 10.1186/1741-7007-7-54 PubMed DOI PMC

Pilato, G. , Mcinnes, S.J. & Lisi, O. (2012) Hebesuncus mollispinus (Eutardigrada, Hypsibiidae), a new species from maritime Antarctica. Zootaxa, 3446(1), 60–68. Available from: 10.11646/zootaxa.3446.1.4 DOI

Pilato, G. , Sabella, G. , D'urso, V. & Lisi, O. (2017) Two new species of Eutardigrada from Victoria land, Antarctica. Zootaxa, 4317(3), 541–558. Available from: 10.11646/zootaxa.4317.3.6 DOI

Pimentel, A.C. , Cesar, C.S. , Martins, M. & Cogni, R. (2021) The antiviral effects of the symbiont bacteria Wolbachia in insects. Frontiers in Immunology, 11, 626329. Available from: 10.3389/fimmu.2020.626329 PubMed DOI PMC

Poinsot, D. & Merçot, H. (1997) Wolbachia infection in Drosophila simulans: does the female host bear a physiological cost? Evolution, 51(1), 180–186. Available from: 10.1111/j.1558-5646.1997.tb02399.x PubMed DOI

Potapov, M.B. , Janion‐Scheepers, C. & Deharveng, L. (2020) Taxonomy of the Cryptopygus complex. III. The revision of South African species of Cryptopygus and Isotominella (Collembola, Isotomidae). ZooKeys, 945, 99–127. Available from: 10.3897/zookeys.945.51860 PubMed DOI PMC

Potocka, M. & Krzemińska, E. (2018) Trichocera maculipennis (Diptera): an invasive species in maritime Antarctica. PeerJ, 6, e5408. Available from: 10.7717/peerj.5408 PubMed DOI PMC

Pourriot, R. & Clément, P. (1981) Action de facteurs externes sur la reproduction et le cycle reproducteur des Rotifères. Acta Oecologica/Oecologia Generalis, 2(2), 135–151 (In French).

Pugh, P.J.A. (1993) A synonymic catalogue of the Acari from Antarctica, the sub‐Antarctic Islands and the Southern Ocean. Journal of Natural History, 27(2), 323–421. Available from: 10.1080/00222939300770171 DOI

Pugh, P.J.A. & Convey, P. (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography, 35(12), 2176–2186. Available from: 10.1111/j.1365-2699.2008.01953.x DOI

Putnam, H.M. , Barott, K.L. , Ainsworth, T.D. & Gates, R.D. (2017) The vulnerability and resilience of reef‐building corals. Current Biology, 27(11), R528–R540. Available from: 10.1016/j.cub.2017.04.047 PubMed DOI

Ramírez‐Puebla, S.T. , Servín‐Garcidueñas, L.E. , Ormeño‐Orrillo, E. , Vera‐Ponce de León, A. , Rosenblueth, M. , Delaye, L. et al. (2015) Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups. Systematic and Applied Microbiology, 38(6), 390–399. Available from: 10.1016/j.syapm.2015.05.005 PubMed DOI

RAS . (2024) Register of Antarctic species (RAS). https://ras.biodiversity.aq/

Raychoudhury, R. , Baldo, L. , Oliveira, D.C.S.G. & Werren, J.H. (2009) Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution, 63(1), 165–183. Available from: 10.1111/j.1558-5646.2008.00533.x PubMed DOI

Raymond, M.R. , Wharton, D.A. & Marshall, C.J. (2014) Nematodes from the Victoria land coast, Antarctica and comparisons with cultured Panagrolaimus davidi . Antarctic Science, 26(1), 15–22. Available from: 10.1017/S0954102013000230 DOI

Remedios‐de León, M. , Hughes, K.A. , Morelli, E. & Convey, P. (2021) International response under the Antarctic treaty system to the establishment of a non‐native fly in Antarctica. Environmental Management, 67(6), 1043–1059. Available from: 10.1007/s00267-021-01464-z PubMed DOI PMC

Reynolds, K.T. & Hoffmann, A.A. (2002) Male age, host effects and the weak expression or non‐expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia . Genetics Research, 80(2), 79–87. Available from: 10.1017/S0016672302005827 PubMed DOI

Ricci, C. (1998) Are lemnisci and proboscis present in the Bdelloidea? Hydrobiologia, 387, 93–96. Available from: 10.1023/A:1017091104243 DOI

Ricci, C. , Melone, G. & Sotgia, C. (1993) Old and new data on Seisonidea (Rotifera). Hydrobiologia, 255(1), 495–511. Available from: 10.1007/BF00025879 DOI

Richters, F. (1904) Vorläufiger Bericht über die antarktische Moosfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft, Tübingen, 24(26), 236–239 (In German).

Rigaud, T. & Juchault, P. (1998) Sterile intersexuality in an isopod induced by the interaction between a bacterium (Wolbachia) and the environment. Canadian Journal of Zoology, 76(3), 493–499. Available from: 10.1139/z97-216 DOI

Rishan, S.T. , Richard, J.K. & Rahman, S. (2023) Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: a critical review on the challenges and limitations of eDNA metabarcoding. Environmental Advances, 12, 100370. Available from: 10.1016/j.envadv.2023.100370 DOI

Ritter, S. , Michalski, S.G. , Settele, J. , Wiemers, M. , Fric, Z.F. , Sielezniew, M. et al. (2013) Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (lepidoptera: Lycaenidae). PLoS One, 8(11), e78107. Available from: 10.1371/journal.pone.0078107 PubMed DOI PMC

Robertson, M.W. , Russo, N.J. , McInnes, S.J. , Goffinet, B. & Jiménez, J.E. (2020) Potential dispersal of tardigrades by birds through endozoochory: evidence from sub‐Antarctic White‐bellied Seedsnipe (Attagis malouinus). Polar Biology, 43(7), 899–902. Available from: 10.1007/s00300-020-02680-9 DOI

Rodrigues, J. , Lefoulon, E. , Gavotte, L. , Perillat‐Sanguinet, M. , Makepeace, B. , Martin, C. et al. (2023) Wolbachia springs eternal: symbiosis in collembola is associated with host ecology. Royal Society Open Science, 10(5), 230288. Available from: 10.1098/rsos.230288 PubMed DOI PMC

Ros, V.I.D. , Fleming, V.M. , Feil, E.J. & Breeuwer, J.A.J. (2009) How diverse is the genus Wolbachcollia? Multiple‐gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Applied and Environmental Microbiology, 75(4), 1036–1043. Available from: 10.1128/AEM.01109-08 PubMed DOI PMC

Ruscheweyh, H.‐J. , Milanese, A. , Paoli, L. , Karcher, N. , Clayssen, Q. , Metzger, M.I. et al. (2022) Reference genome‐independent taxonomic profiling of microbiomes with mOTUs3. bioRxiv, 2021.04.20.440600. Available from: 10.1101/2021.04.20.440600 DOI

Russell, D.J. , Hohberg, K. , Potapov, M. , Bruckner, A. , Otte, V. & Christian, A. (2014) Native terrestrial invertebrate fauna from the northern Antarctic peninsula: new records, state of current knowledge and ecological preferences: summary of a German federal study. Soil Organisms, 86(1), 1–58.

Saeed, N. , Battisti, A. , Martinez‐Sañudo, I. & Mori, N. (2018) Combined effect of temperature and Wolbachia infection on the fitness of Drosophila suzukii . Bulletin of Insectology, 71(2), 161–169.

Sanaei, E. , Charlat, S. & Engelstädter, J. (2021) Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biological Reviews, 96(2), 433–453. Available from: 10.1111/brv.12663 PubMed DOI

Scholz, M. , Albanese, D. , Tuohy, K. , Donati, C. , Segata, N. & Rota‐Stabelli, O. (2020) Large scale genome reconstructions illuminate Wolbachia evolution. Nature Communications, 11(1), 5235. Available from: 10.1038/s41467-020-19016-0 PubMed DOI PMC

Segers, H. (2002) The nomenclature of the Rotifera: annotated checklist of valid family‐ and genus‐group names. Journal of Natural History, 36(6), 631–640. Available from: 10.1080/002229302317339707 DOI

Serbus, L.R. , White, P.M. , Silva, J.P. , Rabe, A. , Teixeira, L. , Albertson, R. et al. (2015) The impact of host diet on Wolbachia titer in Drosophila . PLoS Pathogens, 11(3), e1004777. Available from: 10.1371/journal.ppat.1004777 PubMed DOI PMC

Serga, S. , Maistrenko, O. , Rozhok, A. , Mousseau, T. & Kozeretska, I. (2014) Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster . Symbiosis, 63(1), 11–17. Available from: 10.1007/s13199-014-0283-1 DOI

Serga, S.V. , Maistrenko, O.M. & Kozeretska, I.A. (2023) Wolbachia: an endosymbiont of Drosophila . In: Dharumadurai, D. (Ed.) Microbial symbionts: functions and molecular interactions on host. London: Academic Press, pp. 599–620. Available from: 10.1016/B978-0-323-99334-0.00025-6 DOI

Serga, S.V. , Maistrenko, O.M. , Matiytsiv, N.P. , Vaiserman, A.M. & Kozeretska, I.A. (2021) Effects of Wolbachia infection on fitness‐related traits in Drosophila melanogaster . Symbiosis, 83(2), 163–172. Available from: 10.1007/s13199-020-00743-3 DOI

Serra, M. & Snell, T.W. (2009) Sex loss in monogonont rotifers. In: Schön, I. , Martens, K. & Dijk, P. (Eds.) Lost sex: the evolutionary biology of parthenogenesis. Dordrecht: Springer Netherlands, pp. 281–294. Available from: 10.1007/978-90-481-2770-2_14 DOI

Shoemaker, D.D. , Ross, K.G. , Keller, L. , Vargo, E.L. & Werren, J.H. (2000) Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Molecular Biology, 9(6), 661–673. Available from: 10.1046/j.1365-2583.2000.00233.x PubMed DOI

Short, K.A. , Sands, C.J. , McInnes, S.J. , Pisani, D. , Stevens, M.I. & Convey, P. (2022) An ancient, Antarctic‐specific species complex: large divergences between multiple Antarctic lineages of the tardigrade genus Mesobiotus . Molecular Phylogenetics and Evolution, 170, 107429. Available from: 10.1016/j.ympev.2022.107429 PubMed DOI

Shropshire, J.D. , Leigh, B. & Bordenstein, S.R. (2020) Symbiont‐mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife, 9, e61989. Available from: 10.7554/ELIFE.61989 PubMed DOI PMC

Sielaff, M. , Schmidt, H. , Struck, T.H. , Rosenkranz, D. , Mark Welch, D.B. , Hankeln, T. et al. (2016) Phylogeny of Syndermata (syn. Rotifera): mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic Hemirotifera. Molecular Phylogenetics and Evolution, 96, 79–92. Available from: 10.1016/j.ympev.2015.11.017 PubMed DOI

Stevens, M.I. , Greenslade, P. & D'Haese, C.A. (2021) Species diversity in Friesea (Neanuridae) reveals similar biogeographic patterns among Antarctic collembola. Zoologica Scripta, 50(5), 647–657. Available from: 10.1111/zsc.12490 DOI

Strunov, A. , Lerch, S. , Blanckenhorn, W.U. , Miller, W.J. & Kapun, M. (2022) Complex effects of environment and Wolbachia infections on the life history of Drosophila melanogaster hosts. Journal of Evolutionary Biology, 35(6), 788–802. Available from: 10.1111/jeb.14016 PubMed DOI PMC

Subías, L. , Shtanchaeva, U. & Arillo, A. (2012) Listado de los ácaros oribátidos (Acariformes, Oribatida) de las diferentes regiones biogeográficas del mundo. Monografías electrónicas de la Sociedad Entomológica Aragonesa, 4, 1–815 (In Spanish).

Sun, X. , Bedos, A. & Deharveng, L. (2018) Unusually low genetic divergence at COI barcode locus between two species of intertidal Thalassaphorura (collembola: Onychiuridae). PeerJ, 6, e5021. Available from: 10.7717/peerj.5021 PubMed DOI PMC

Tanganelli, V. , Fanciulli, P.P. , Nardi, F. & Frati, F. (2014) Molecular phylogenetic analysis of a novel strain from Neelipleona enriches Wolbachia diversity in soil biota. Pedobiologia, 57(1), 15–20. Available from: 10.1016/j.pedobi.2013.08.004 DOI

Taylor, M.J. , Voronin, D. , Johnston, K.L. & Ford, L. (2013) Wolbachia filarial interactions. Cellular Microbiology, 15(4), 520–526. Available from: 10.1111/cmi.12084 PubMed DOI

Teixeira, L. , Ferreira, Á. & Ashburner, M. (2008) The bacterial symbiont Wolbachia induces resistance to rna viral infections in Drosophila melanogaster . PLoS Biology, 6(12), e1000002. Available from: 10.1371/journal.pbio.1000002 PubMed DOI PMC

Tibbs‐Cortes, L.E. , Tibbs‐Cortes, B.W. & Schmitz‐Esser, S. (2022) Tardigrade community microbiomes in north American orchards include putative endosymbionts and plant pathogens. Frontiers in Microbiology, 13, 866930. Available from: 10.3389/fmicb.2022.866930 PubMed DOI PMC

Timmermans, M.J.T.N. & Ellers, J. (2009) Wolbachia endosymbiont is essential for egg hatching in a parthenogenetic arthropod. Evolutionary Ecology, 23(6), 931–942. Available from: 10.1007/s10682-008-9282-0 DOI

Timmermans, M.J.T.N. , Mariën, J. , Roelofs, D. , van Straalen, N.M. & Ellers, J. (2004) Evidence for multiple origins of Wolbachia infection in springtails. Pedobiologia, 48(5–6), 469–475. Available from: 10.1016/j.pedobi.2004.07.008 DOI

Timmermans, M.J.T.N. , Prabha, H. & Kett, S. (2023) Wolbachia and Spiroplasma endosymbionts in the Anurida maritima (collembola) species group. Evolutionary Journal of the Linnean Society, 2(1), kzad001. Available from: 10.1093/evolinnean/kzad001 DOI

Tsujimoto, M. , Kagoshima, H. , Kanda, H. , Watanabe, K. & Imura, S. (2020) Reproductive performance of the Antarctic tardigrades, Acutuncus antarcticus (Eutardigrada: Hypsibiidae), revived after being frozen for over 30 years and of their offspring. Zoological Journal of the Linnean Society, 188(3), 839–847. Available from: 10.1093/zoolinnean/zlz137 DOI

Tsujimoto, M. , McInnes, S.J. , Convey, P. & Imura, S. (2014) Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud land, East Antarctica. Polar Biology, 37(9), 1361–1367. Available from: 10.1007/s00300-014-1516-8 DOI

Tsutsui, N.D. , Kauppinen, S.N. , Oyafuso, A.F. & Grosberg, R.K. (2003) The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive Argentine ant (Linepithema humile). Molecular Ecology, 12(11), 3057–3068. Available from: 10.1046/j.1365-294X.2003.01979.x PubMed DOI

Tumanov, D.V. (2022) End of a mystery: integrative approach reveals the phylogenetic position of an enigmatic Antarctic tardigrade genus Ramajendas (Tardigrada, Eutardigrada). Zoologica Scripta, 51(2), 217–231. Available from: 10.1111/zsc.12521 DOI

Turelli, M. & Barton, N.H. (2022) Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control. Evolution Letters, 6(1), 92–105. Available from: 10.1002/evl3.270 PubMed DOI PMC

Turelli, M. & Hoffmann, A.A. (1995) Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics, 140(4), 1319–1338. Available from: 10.1093/genetics/140.4.1319 PubMed DOI PMC

Turelli, M. , Katznelson, A. & Ginsberg, P.S. (2022) Why Wolbachia‐induced cytoplasmic incompatibility is so common. Proceedings of the National Academy of Sciences of the United States of America, 119(47), e2211637119. Available from: 10.1073/pnas.2211637119 PubMed DOI PMC

van Vuuren, B.J. , Lee, J.E. , Convey, P. & Chown, S.L. (2018) Conservation implications of spatial genetic structure in two species of oribatid mites from the Antarctic peninsula and the scotia arc. Antarctic Science, 30(2), 105–114. Available from: 10.1017/S0954102017000529 DOI

Vancaester, E. & Blaxter, M. (2023) Phylogenomic analysis of Wolbachia genomes from the Darwin tree of life biodiversity genomics project. PLoS Biology, 21(1), e3001972. Available from: 10.1371/journal.pbio.3001972 PubMed DOI PMC

Vandekerckhove, T.T.M. , Watteyne, S. , Willems, A. , Swings, J.G. , Mertens, J. & Gillis, M. (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, collembola) and its implications for wolbachial taxonomy. FEMS Microbiology Letters, 180(2), 279–286. Available from: 10.1111/j.1574-6968.1999.tb08807.x PubMed DOI

Vecchi, M. , Cesari, M. , Bertolani, R. , Jönsson, K.I. , Rebecchi, L. & Guidetti, R. (2016a) Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea. Invertebrate Systematics, 30(4), 303–322. Available from: 10.1071/IS15033 DOI

Vecchi, M. , Newton, I.L.G. , Cesari, M. , Rebecchi, L. & Guidetti, R. (2018) The microbial community of tardigrades: environmental influence and species specificity of microbiome structure and composition. Microbial Ecology, 76(2), 467–481. Available from: 10.1007/s00248-017-1134-4 PubMed DOI

Vecchi, M. , Vicente, F. , Guidetti, R. , Bertolani, R. , Rebecchi, L. & Cesari, M. (2016b) Interspecific relationships of tardigrades with bacteria, fungi and protozoans, with a focus on the phylogenetic position of Pyxidium tardigradum (Ciliophora). Zoological Journal of the Linnean Society, 178(4), 846–855. Available from: 10.1111/zoj.12446 DOI

Velasco‐Castrillón, A. , Gibson, J.A.E. & Stevens, M.I. (2014a) A review of current Antarctic limno‐terrestrial microfauna. Polar Biology, 37(10), 1517–1531. Available from: 10.1007/s00300-014-1544-4 DOI

Velasco‐Castrillón, A. , Hawes, I. & Stevens, M.I. (2018) 100 years on: a re‐evaluation of the first discovery of microfauna from Ross Island, Antarctica. Antarctic Science, 30(4), 209–219. Available from: 10.1017/S095410201800007X DOI

Velasco‐Castrillón, A. , Page, T.J. , Gibson, J.A.E. & Stevens, M.I. (2014b) Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity, 15(2–3), 130–142. Available from: 10.1080/14888386.2014.930717 DOI

Veneti, Z. , Zabalou, S. , Papafotiou, G. , Paraskevopoulos, C. , Pattas, S. , Livadaras, I. et al. (2012) Loss of reproductive parasitism following transfer of male‐killing Wolbachia to Drosophila melanogaster and Drosophila simulans . Heredity, 109(5), 306–312. Available from: 10.1038/hdy.2012.43 PubMed DOI PMC

Viljakainen, L. , Reuter, M. & Pamilo, P. (2008) Wolbachia transmission dynamics in Formica wood ants. BMC Evolutionary Biology, 8(1), 55. Available from: 10.1186/1471-2148-8-55 PubMed DOI PMC

Volonterio, O. , Ponce de León, R. , Convey, P. & Krzemińska, E. (2013) First record of Trichoceridae (Diptera) in the maritime Antarctic. Polar Biology, 36(8), 1125–1131. Available from: 10.1007/s00300-013-1334-4 DOI

Wade, M.J. & Stevens, L. (1994) The effect of population subdivision on the rate of spread of parasite‐mediated cytoplasmic incompatibility. Journal of Theoretical Biology, 167(1), 81–87. Available from: 10.1006/jtbi.1994.1052 PubMed DOI

Wasala, S.K. , Brown, A.M.V. , Kang, J. , Howe, D.K. , Peetz, A.B. , Zasada, I.A. et al. (2019) Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant‐parasitic nematode field populations. Frontiers in Microbiology, 10, 964. Available from: 10.3389/fmicb.2019.00964 PubMed DOI PMC

Weeks, A.R. & Breeuwer, J.A.J. (2001) Wolbachia‐induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society of London Series B: Biological Sciences, 268(1482), 2245–2251. Available from: 10.1098/rspb.2001.1797 PubMed DOI PMC

Weeks, A.R. , Turelli, M. , Harcombe, W.R. , Reynolds, K.T. & Hoffmann, A.A. (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila . PLoS Biology, 5(5), e114. Available from: 10.1371/journal.pbio.0050114 PubMed DOI PMC

Weinert, L.A. , Araujo‐Jnr, E.V. , Ahmed, M.Z. & Welch, J.J. (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 20150249. Available from: 10.1098/rspb.2015.0249 PubMed DOI PMC

Werren, J.H. , Baldo, L. & Clark, M.E. (2008) Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. Available from: 10.1038/nrmicro1969 PubMed DOI

Weyandt, N. , Aghdam, S.A. & Brown, A.M.V. (2022) Discovery of early‐branching Wolbachia reveals functional enrichment on horizontally transferred genes. Frontiers in Microbiology, 13, 867392. Available from: 10.3389/fmicb.2022.867392 PubMed DOI PMC

Wood, D.E. , Lu, J. & Langmead, B. (2019) Improved metagenomic analysis with kraken 2. Genome Biology, 20(1), 257. Available from: 10.1186/s13059-019-1891-0 PubMed DOI PMC

Xue, X. , Suvorov, A. , Fujimoto, S. , Dilman, A.R. & Adams, B.J. (2021) Genome analysis of Plectus murrayi, a nematode from continental Antarctica. G3: Genes, Genomes, Genetics, 11(1), jkaa045. Available from: 10.1093/g3journal/jkaa045 PubMed DOI PMC

Zhu, Y.‐X. , Song, Z.‐R. , Zhang, Y.‐Y. , Hoffmann, A.A. & Hong, X.‐Y. (2021) Spider mites singly infected with either Wolbachia or Spiroplasma have reduced thermal tolerance. Frontiers in Microbiology, 12, 706321. Available from: 10.3389/fmicb.2021.706321 PubMed DOI PMC

Zug, R. & Hammerstein, P. (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews, 90(1), 89–111. Available from: 10.1111/brv.12098 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...