Genome-wide screening of DNA copy number alterations in cervical carcinoma patients with CGH+SNP microarrays and HPV-FISH

. 2014 ; 7 (8) : 5071-82. [epub] 20140715

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25197380

Alterations in the genome that lead to changes in DNA sequence copy number are characteristic features of solid tumors. We used CGH+SNP microarray and HPV-FISH techniques for detailed screening of copy number alterations (CNAs) in a cohort of 26 patients with cervical carcinoma (CC). This approach identified CNAs in 96.2% (25/26) of tumors. Array-CGH discovered CNAs in 73.1% (19/26) of samples, HPV-FISH experiments revealed CNAs in additional 23.1% (6/26) of samples. Common gains of genetic sequences were observed in 3q (50.0%), 1q (42.4%), 19q (23.1%), while losses were frequently found in 11q (30.8%), 4q (23.1%) and 13q (19.2%). Chromosomal regions involved in loss of heterozygosity were observed in 15.4% of samples in 8q21, 11q23, 14q21 and 18q12.2. Incidence of gain 3q was associated with HPV 16 and HPV 18 positive samples and simultaneous presence of gain 1q (P = 0.033). We did not found a correlation between incidence of CNAs identified by array-CGH and HPV strain infection and incidence of lymph node metastases. Subsequently, HPV-FISH was used for validation of array-CGH results in 23 patients for incidence of hTERC (3q26) and MYC (8q24) amplification. Using HPV-FISH, we found chromosomal lesions of hTERC in 87.0% and MYC in 65.2% of specimens. Our findings confirmed the important role of HPV infection and specific genomic alterations in the development of invasive cervical cancer. This study also indicates that CGH+SNP microarrays allow detecting genome-wide CNAs and copy-neutral loss of heterozygosity more precisely, however, it may be less sensitive than FISH in samples with low level clonal CNAs.

Zobrazit více v PubMed

Kesic V, Poljak M, Rogovskaya S. Cervical cancer burden and prevention activities in Europe. Cancer Epidemiol Biomarkers Prev. 2012;21:1423–1433. PubMed

Bonanni P, Levi M, Latham NB, Bechini A, Tiscione E, Lai P, Panatto D, Gasparini R, Boccalini S. An overview on the implementation of HPV vaccination in Europe. Hum Vaccin. 2011;7:128–135. PubMed

Prabakar I, Moss EL, Douce G, Parkes J, Redman CW. Review of invasive cervical cancers and uptake of disclosure of results: an audit of procedures and response. Cytopathology. 2012;23:167–171. PubMed

Lynge E, Antilla A, Arbyn M, Segnan N, Ronco G. What’s next? Perspectives and future needs of cervical screening in Europe in the era of molecular testing and vaccination. Eur J Cancer. 2009;45:2714–2721. PubMed

Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–19. PubMed

Kulasingam SL, Hughes JP, Kiviat NB, Mao C, Weiss NS, Kuypers JM, Koutsky LA. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. JAMA. 2002;288:1749–1757. PubMed

Haverkos H, Rohrer M, Pickworth W. The cause of invasive cervical cancer could be multifactorial. Biomed Pharmacother. 2000;54:54–59. PubMed

Melsheimer P, Vinokurova S, Wentzensen N, Bastert G, von Knebel Doeberitz M. DNA aneuploidy and integration of human papillomavirus type 16 e6/e7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri. Clin Cancer Res. 2004;10:3059–3063. PubMed

Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004;64:3878–3884. PubMed

Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Lundsteen C, Bryndorf T, Kryger-Baggesen N, Christensen L, Engelholm SA, Philip J. Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes Chromosomes Cancer. 1999;24:144–150. PubMed

Huang FY, Kwok YK, Lau ET, Tang MH, Ng TY, Ngan HY. Genetic abnormalities and HPV status in cervical and vulvar squamous cell carcinomas. Cancer Genet Cytogenet. 2005;157:42–48. PubMed

Hopman AH, Theelen W, Hommelberg PP, Kamps MA, Herrington CS, Morrison LE, Speel EJ, Smedts F, Ramaekers FC. Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer. J Pathol. 2006;210:412–419. PubMed

Chen S, Yang Z, Zhang Y, Qiao Y, Cui B, Zhang Y, Kong B. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia. Diagn Pathol. 2012;7:40. PubMed PMC

Golijow CD, Abba MC, Mouron SA, Gomez MA, Dulout FN. c-myc gene amplification detected in preinvasive intraepithelial cervical lesions. Int J Gynecol Cancer. 2001;11:462–465. PubMed

Eid MM, Nossair HM, Ismael MT, Amira G, Hosney MM, Abdul Rahman R. Clinical significance of hTERC and C-Myc genes amplification in a group of Egyptian patients with cancer cervix. Gulf J Oncolog. 2011:18–26. PubMed

Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijnenburg J, Gorter A, Kenter GG, Fleuren GJ, Jordanova ES. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC Genomics. 2007;8:53. PubMed PMC

Dellas A, Torhorst J, Gaudenz R, Mihatsch MJ, Moch H. DNA copy number changes in cervical adenocarcinoma. Clin Cancer Res. 2003;9:2985–2991. PubMed

Ng G, Winder D, Muralidhar B, Gooding E, Roberts I, Pett M, Mukherjee G, Huang J, Coleman N. Gain and overexpression of the oncostatin M receptor occur frequently in cervical squamous cell carcinoma and are associated with adverse clinical outcome. J Pathol. 2007;212:325–334. PubMed

Tachezy R, Davies P, Arbyn M, Rob L, Lazdane G, Petrenko J, Hamsikova E, Bekova A, Klozar J, Duskova J. Consensus recommendations for cervical cancer prevention in the Czech Republic: a report of the International Conference on Human Papillomavirus in Human Pathology (Prague, 1-3 May 2008) J Med Screen. 2008;15:207–210. PubMed

Smetana J, Frohlich J, Vranova V, Mikulasova A, Kuglik P, Hajek R. Oligonucleotide-based array CGH as a diagnostic tool in multiple myeloma patients. Klin Onkol. 2011;24:S43–48. PubMed

Moukova L, Vranova V, Slamova I, Kissova M, Kuglik P. Initial Experience with Determination of hTERC and MYCC Amplification in Cervical Intraepithelial Neoplasia and Cervical Carcinoma in the Czech Republic. Eur Oncol Haematol. 2012;8:92–96.

Sokolova I, Algeciras-Schimnich A, Song M, Sitailo S, Policht F, Kipp BR, Voss JS, Halling KC, Ruth A, King W, Underwood D, Brainard J, Morrison L. Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens. J Mol Diagn. 2007;9:604–611. PubMed PMC

Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Philip J, Lundsteen C. Comparative genomic hybridization reveals non-random chromosomal aberrations in early preinvasive cervical lesions. Cancer Genet Cytogenet. 2001;129:47–51. PubMed

Yangling O, Shulang Z, Rongli C, Bo L, Lili C, Xin W. Genetic imbalance and human papillomavirus states in vulvar squamous cell carcinomas. Eur J Gynaecol Oncol. 2007;28:442–446. PubMed

Thomas LK, Bermejo JL, Vinokurova S, Jensen K, Bierkens M, Steenbergen R, Bergmann M, von Knebel Doeberitz M, Reuschenbach M. Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract - a systematic review and meta-analysis. Eur J Cancer. 2014;50:85–98. PubMed

Rao PH, Arias-Pulido H, Lu XY, Harris CP, Vargas H, Zhang FF, Narayan G, Schneider A, Terry MB, Murty VV. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC Cancer. 2004;4:5. PubMed PMC

Yang YC, Shyong WY, Chang MS, Chen YJ, Lin CH, Huang ZD, Wang , Hsu MT. Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma. Cancer Genet Cytogenet. 2001;131:48–53. PubMed

Bulten J, Melchers WJ, Kooy-Smits MM, de Wilde PC, Poddighe PJ, Robben JC, Macville MV, Massuger LF, Bakkers JM, Hanselaar AG. Numerical aberrations of chromosome 1 in cervical intraepithelial neoplasia are strongly associated with infection with high-risk human papillomavirus types. J Pathol. 2002;198:300–309. PubMed

Cortes-Gutierrez EI, Davila-Rodriguez MI, Muraira-Rodriguez M, Said-Fernandez S, Cerda-Flores RM. Association between the stages of cervical cancer and chromosome 1 aneusomy. Cancer Genet Cytogenet. 2005;159:44–47. PubMed

Wilting SM, de Wilde J, Meijer CJ, Berkhof J, Yi Y, van Wieringen WN, Braakhuis BJ, Meijer GA, Ylstra B, Snijders PJ, Steenbergen RD. Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer. 2008;47:890–905. PubMed PMC

Wilting SM, Steenbergen RD, Tijssen M, van Wieringen WN, Helmerhorst TJ, van Kemenade FJ, Bleeker MC, van de Wiel MA, Carvalho B, Meijer GA, Ylstra B, Meijer CJ, Snijders PJ. Chromosomal signatures of a subset of high-grade premalignant cervical lesions closely resemble invasive carcinomas. Cancer Res. 2009;69:647–655. PubMed

Harris CP, Lu XY, Narayan G, Singh B, Murty VV, Rao PH. Comprehensive molecular cytogenetic characterization of cervical cancer cell lines. Genes Chromosomes Cancer. 2003;36:233–241. PubMed

Oh EK, Kim YW, Kim IW, Liu HB, Lee KH, Chun HJ, Park DC, Oh EJ, Lee AW, Bae SM, Ahn WS. Differential DNA copy number aberrations in the progression of cervical lesions to invasive cervical carcinoma. Int J Oncol. 2012;41:2038–2046. PubMed

Scotto L, Narayan G, Nandula SV, Subramaniyam S, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Schneider A, Arias-Pulido H, Murty VV. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol Cancer. 2008;7:58. PubMed PMC

Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H, Roberts I, Pett M, Coleman N. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol. 2011;224:496–507. PubMed

Zhang A, Maner S, Betz R, Angstrom T, Stendahl U, Bergman F, Zetterberg A, Wallin KL. Genetic alterations in cervical carcinomas: frequent low-level amplifications of oncogenes are associated with human papillomavirus infection. Int J Cancer. 2002;101:427–433. PubMed

Allen DG, White DJ, Hutchins AM, Scurry JP, Tabrizi SN, Garland SM, Armes JE. Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer. Br J Cancer. 2000;83:1659–1663. PubMed PMC

Singh RK, Dasgupta S, Bhattacharya N, Chunder N, Mondal R, Roy A, Mandal S, Roychowdhury S, Panda CK. Deletion in chromosome 11 and Bcl-1/Cyclin D1 alterations are independently associated with the development of uterine cervical carcinoma. J Cancer Res Clin Oncol. 2005;131:395–406. PubMed

Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, Hirohashi S, Inazawa J. Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 2002;62:4860–4866. PubMed

Choschzick M, Tabibzada AM, Gieseking F, Woelber L, Jaenicke F, Sauter G, Simon R. BIRC2 amplification in squamous cell carcinomas of the uterine cervix. Virchows Arch. 2012;461:123–128. PubMed

van den Tillaart SA, Corver WE, Ruano Neto D, ter Haar NT, Goeman JJ, Trimbos JB, Fleuren GJ, Oosting J. Loss of heterozygosity and copy number alterations in flow-sorted bulky cervical cancer. PLoS One. 2013;8:e67414. PubMed PMC

Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio L, Cibulskis K, Bertelsen B, Romero-Cordoba S, Trevino V, Vazquez-Santillan K, Guadarrama AS, Wright AA, Rosenberg MW, Duke F, Kaplan B, Wang R, Nickerson E, Walline HM, Lawrence MS, Stewart C, Carter SL, McKenna A, Rodriguez-Sanchez IP, Espinosa-Castilla M, Woie K, Bjorge L, Wik E, Halle MK, Hoivik EA, Krakstad C, Gabino NB, Gomez-Macias GS, Valdez-Chapa LD, Garza-Rodriguez ML, Maytorena G, Vazquez J, Rodea C, Cravioto A, Cortes ML, Greulich H, Crum CP, Neuberg DS, Hidalgo-Miranda A, Escareno CR, Akslen LA, Carey TE, Vintermyr OK, Gabriel SB, Barrera-Saldana HA, Melendez-Zajgla J, Getz G, Salvesen HB, Meyerson M. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506:371–375. PubMed PMC

Delgado G, Bundy BN, Fowler WC Jr, Stehman FB, Sevin B, Creasman WT, Major F, DiSaia P, Zaino R. A prospective surgical pathological study of stage I squamous carcinoma of the cervix: a Gynecologic Oncology Group Study. Gynecol Oncol. 1989;35:314–320. PubMed

Delgado G, Bundy B, Zaino R, Sevin BU, Creasman WT, Major F. Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol. 1990;38:352–357. PubMed

Dellas A, Torhorst J, Jiang F, Proffitt J, Schultheiss E, Holzgreve W, Sauter G, Mihatsch MJ, Moch H. Prognostic value of genomic alterations in invasive cervical squamous cell carcinoma of clinical stage IB detected by comparative genomic hybridization. Cancer Res. 1999;59:3475–3479. PubMed

Huang KF, Lee WY, Huang SC, Lin YS, Kang CY, Liou CP, Tzeng CC. Chromosomal Gain of 3q and Loss of 11q Often Associated with Nodal Metastasis in Early Stage Cervical Squamous Cell Carcinoma. J Formos Med Assoc. 2007;106:894–902. PubMed

Bonnet F, Guedj M, Jones N, Sfar S, Brouste V, Elarouci N, Banneau G, Orsetti B, Primois C, de Lara CT, Debled M, de Mascarel I, Theillet C, Sevenet N, de Reynies A, MacGrogan G, Longy M. An array CGH based genomic instability index (G2I) is predictive of clinical outcome in breast cancer and reveals a subset of tumors without lymph node involvement but with poor prognosis. BMC Med Genomics. 2012;5:54. PubMed PMC

Liu XP, Kawauchi S, Oga A, Sato T, Ikemoto K, Ikeda E, Sasaki K. Chromosomal aberrations detected by comparative genomic hybridization predict outcome in patients with colorectal carcinoma. Oncol Rep. 2007;17:261–267. PubMed

Smetana J, Dementyeva E, Kryukov F, Nemec P, Greslikova H, Kupska R, Mikulasova A, Ihnatova I, Hajek R, Kuglik P. Incidence of cytogenetic aberrations in two Blineage subpopulations in multiple myeloma patients analyzed by combination of whole-genome profiling and FISH. Neoplasma. 2013 [Epub ahead of print] PubMed

Curtis C, Lynch AG, Dunning MJ, Spiteri I, Marioni JC, Hadfield J, Chin SF, Brenton JD, Tavare S, Caldas C. The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics. 2009;10:588. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace