Amblyostatin-1, the first salivary cystatin with host immunomodulatory and anti-inflammatory properties from the Neotropical tick Amblyomma sculptum, vector of Brazilian spotted fever

. 2025 ; 16 () : 1585703. [epub] 20250717

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40746554

INTRODUCTION: The Neotropical tick Amblyomma sculptum is the primary vector of Rickettsia rickettsii, the causative agent of Brazilian spotted fever, a disease associated with high fatality rates. Tick saliva, a complex mixture of bioactive molecules essential for successful blood feeding, facilitates pathogen transmission and modulates host immune responses. A comprehensive evaluation of the salivary gland transcriptome database reveals that protease inhibitors are abundantly expressed molecules in tick saliva during feeding. Thus, this study aims to describe and characterize the most expressed member of the cystatin family identified in Amblyomma sculptum salivary transcriptome, named Amblyostatin-1. METHODS: Bioinformatic tools were employed for in silico analysis of the Amblyostatin-1 sequence and structure. A recombinant version of Amblyostatin-1 was expressed in an Escherichia coli system, evaluated against a panel of cysteine proteases in biochemical assays, and used to generate antibodies in immunized mice. The biological activities of Amblyostatin-1 were assessed by its effects on dendritic cell maturation in vitro and in a carrageenan-induced inflammation model in vivo. RESULTS: Based on its sequence and predicted three-dimensional structure, Amblyostatin-1 is classified as an I25B cystatin, and its recombinant form selectively inhibits cathepsins L, C, and S at different rates, with a low nanomolar Ki value of 0.697 ± 0.22 nM against cathepsin L. Regarding its biological activities, recombinant Amblyostatin-1 partially affects LPS-induced dendritic cell maturation by downmodulating the costimulatory molecules CD80 and CD86 at higher micromolar concentrations (3 µM) while promoting IL-10 production at nanomolar concentrations (100 nM). The apparent lack of Amblyostatin-1-specific antibody responses in immunized mice suggests an impairment of antigen processing and presentation in vivo. Furthermore, in a carrageenan-induced inflammation model, Amblyostatin-1 decreased edema formation and neutrophil infiltration into the skin without affecting other myeloid cells. DISCUSSION: These findings establish Amblyostatin-1 as a novel salivary cystatin with immunomodulatory and anti-inflammatory properties, highlighting its potential as an immunobiological agent.

Zobrazit více v PubMed

Nuttall PA. Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr. (2019) 1(135):165–176. doi:  10.1007/s00508-019-1500-y, PMID: PubMed DOI PMC

Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol. (2021) 42:554–574. doi:  10.1016/j.it.2021.05.005, PMID: PubMed DOI PMC

Francischetti IM, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci (Landmark Ed). (2009) 14:2051–88. doi:  10.2741/3363, PMID: PubMed DOI PMC

Kotál J, Langhansová H, Lieskovská J, Andersen JF, Francischetti IM, Chavakis T, et al. Modulation of host immunity by tick saliva. J Proteomics. (2015) 128:58–68. doi:  10.1016/j.jprot.2015.07.005, PMID: PubMed DOI PMC

Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. (2017) 7:281. doi:  10.3389/fcimb.2017.00281, PMID: PubMed DOI PMC

Piesman J, Eisen L. Prevention of tick-borne diseases. Annu Rev Entomol. (2008) 53:323–43. doi:  10.1146/annurev.ento.53.103106.093429, PMID: PubMed DOI

Nava S, Beati L, Labruna MB, Cáceres AG, Mangold AJ, Guglielmone AA, et al. Reassessment of the taxonomic status of PubMed DOI

Nogueira BCF, Campos AK, Muñoz-Leal S, Pinter A, Martins TF. Soft and hard ticks (Parasitiformes: ixodida) on humans: A review of Brazilian biomes and the impact of environmental change. Acta Trop. (2022) 234:P. 106598. doi:  10.1016/j.actatropica.2022.106598, PMID: PubMed DOI

Chen LF, Sexton DJ. What’s new in rocky mountain spotted fever? Infect Dis Clin North Am. (2008) 22:415–32. doi:  10.1016/j.idc.2008.03.008, PMID: PubMed DOI

Ministério da Saúde . Óbitos confirmados de Febre Maculosa. Brasil, Regiões e Unidades Federadas (Infecção) – 2007 a 2025. Saúde de A a Z, Brasília, DF (sede do Ministério da Saúde) (2025). Available online at: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/f/febre-maculosa/situacao-epidemiologica/obitos-de-febre-maculosa-brasil-grandes-regioes-e-unidades-federadas-infeccao-2007-a-2025/view (Accessed May 15 2025).

Martins LA, Kotál J, Bensaoud C, Chmelař, Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim Biophys Acta Proteins Proteom. (2020) 1868:P. 140336. doi:  10.1016/j.bbapap.2019.140336, PMID: PubMed DOI

Jmel MA, Voet H, Araújo RN, Tirloni L, Sá-Nunes A, Kotsyfakis M, et al. Tick salivary Kunitz-type inhibitors: targeting host hemostasis and immunity to mediate successful blood feeding. Int J Mol Sci. (2023) 24. doi:  10.3390/ijms24021556, PMID: PubMed DOI PMC

Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: biological role and pharmacological potential. Adv Parasitol. (2024) 126:229–251. doi:  10.1016/bs.apar.2024.09.001, PMID: PubMed DOI

Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): A database that helps to classify tick salivary proteins, A review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front Cell Infect Microbiol. (2020) 10:P. 374. doi:  10.3389/fcimb.2020.00374, PMID: PubMed DOI PMC

Chmelař J, Kotál J, Langhansová H, Kotsyfakis M. Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front Cell Infect Microbiol. (2017) 7:P. 216. doi:  10.3389/fcimb.2017.00216, PMID: PubMed DOI PMC

Parizi LF, Sabadin GA, Alzugaray MF, Seixas A, Logullo C, Konnai S, et al. PubMed DOI PMC

Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The merops database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the panther database. Nucleic Acids Res. (2018) 46:D624–32. doi:  10.1093/nar/gkx1134, PMID: PubMed DOI PMC

Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. (2012) 3:117–27. doi:  10.1016/j.ttbdis.2012.03.004, PMID: PubMed DOI PMC

Kotsyfakis M, Sá-Nunes A, Francischetti IM, Mather TN, Andersen JF, Ribeiro JM, et al. Antiinflammatory and immunosuppressive activity of Sialostatin L, A salivary cystatin from the tick PubMed DOI

Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM, et al. Exploring the sialome of the tick PubMed DOI

Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. Signalp 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. (2022) 40:1023–1025. doi:  10.1038/s41587-021-01156-3, PMID: PubMed DOI PMC

Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput. (2002) 7:310–22., PMID: PubMed

Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human O-galnac glycoproteome through simplecell technology. EMBO J. (2013) 32:1478–88. doi:  10.1038/emboj.2013.79, PMID: PubMed DOI PMC

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the expasy server. In: The Proteomics Protocols Handbook. Humana Press, Totowa, Nj: (2005). p. 571–607., PMID:

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with alphafold. Nature. (2021) 596:583–589. doi:  10.1038/s41586-021-03819-2, PMID: PubMed DOI PMC

Heo L, Park H, Seok C. Galaxyrefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. (2013) 41:W384–8. doi:  10.1093/nar/gkt458, PMID: PubMed DOI PMC

Lee GR, Heo L, Seok C. Effective protein model structure refinement by loop modeling and overall relaxation. Proteins. (2016) 84 Suppl 1:293–301. doi:  10.1002/prot.24858, PMID: PubMed DOI

Ribeiro JMC, Bayona-Vásquez NJ, Budachetri K, Kumar D, Frederick JC, Tahir F, et al. A draft of the genome of the gulf coast tick, PubMed DOI PMC

Cerqueira De Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, et al. Genome sequences of four PubMed DOI PMC

De S, Kingan SB, Kitsou C, Portik DM, Foor SD, Frederick JC, et al. A high-quality PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. (1990) 215:403–10. doi:  10.1016/S0022-2836(05)80360-2, PMID: PubMed DOI

Consortium U. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. (2023) 51:D523–31. doi:  10.1093/nar/gkac1052, PMID: PubMed DOI PMC

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. Interproscan 5: genome-scale protein function classification. Bioinformatics. (2014) 30:1236–40. doi:  10.1093/bioinformatics/btu031, PMID: PubMed DOI PMC

Madeira F, Madhusoodanan N, Lee JE, Eusebi A, Niewielska A, Tivey A, et al. The embl-ebi job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. (2024) 52:W521–5. doi:  10.1093/nar/gkae241, PMID: PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. Trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. (2009) 25:1972–3. doi:  10.1093/bioinformatics/btp348, PMID: PubMed DOI PMC

Yu G. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinf. (2020) 69:E96. doi:  10.1002/cpbi.96, PMID: PubMed DOI

Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JM, et al. Selective cysteine protease inhibition contributes to blood-feeding success of the tick PubMed DOI

Kotál J, Stergiou N, Buša M, Chlastáková A, Beránková Z, Řezáčová P, et al. The structure and function of iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol Life Sci. (2019) 76:2003–2013. doi:  10.1007/s00018-019-03034-3, PMID: PubMed DOI PMC

Kotál J, Buša M, Urbanová V, Řezáčová P, Chmelař J, Langhansová H, et al. Mialostatin, a novel midgut cystatin from PubMed DOI PMC

Martins LA, Buša M, Chlastáková A, Kotál J, Beránková Z, Stergiou N, et al. Protease-bound structure of ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host. Cell Mol Life Sci. (2023) 80:P. 339. doi:  10.1007/s00018-023-04993-4, PMID: PubMed DOI PMC

Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. (1991) 285:213–9. doi:  10.1016/0014-5793(91)80804-C, PMID: PubMed DOI

Costa GCA, Torquato RJS, de Morais Gomes V, Rosa-Fernandes L, Palmisano G, Tanaka AS, et al. Functional characterization of a cystatin A from the bat Myotis davidii. Comp Biochem Physiol B Biochem Mol Biol. (2024) 274:111003. doi:  10.1016/j.cbpb.2024.111003, PMID: PubMed DOI

Barrett AJ. Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J. (1980) 187:909–12. doi:  10.1042/bj1870909, PMID: PubMed DOI PMC

Morrison JF. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta. (1969) 185:269–86. doi:  10.1016/0005-2744(69)90420-3, PMID: PubMed DOI

Bizzarro B, Barros MS, Maciel C, Gueroni DI, Lino CN, Campopiano J, et al. Effects of PubMed DOI PMC

Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, et al. PubMed DOI PMC

Barros MS, Gomes E, Gueroni DI, Ramos A, Mirotti L, Florsheim E, et al. Exposure to PubMed DOI PMC

Costa GCA, Ribeiro ICT, Melo-Junior OG, Gontijo NF, Sant’Anna MRV, Pereira MH, et al. Salivary protease inhibitors as potential anti-tick vaccines. Front Immunol. (2020) 11:P. 611104. doi:  10.3389/fimmu.2020.611104, PMID: PubMed DOI PMC

Lara PG, Esteves E, Sales-Campos H, Assis JB, Henrique MO, Barros MS, et al. Aemope-1, a novel salivary peptide from PubMed DOI PMC

Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, et al. Analysis of the salivary gland transcriptome of unfed and partially fed PubMed DOI PMC

Lu S, Soares TS, Vaz Junior IS, Lovato DV, Tanaka AS. Rmcystatin3, A cysteine protease inhibitor from PubMed DOI

Cardoso THS, Lu S, Gonzalez BRG, Torquato RJS, Tanaka AS. Characterization of A novel cystatin type 2 from PubMed DOI

Lu S, da Rocha LA, Torquato RJS, da Silva Vaz Junior I, Florin-Christensen M, Tanaka AS. A novel type 1 cystatin involved in the regulation of PubMed DOI

Grunclová L, Horn M, Vancová M, Sojka D, Franta Z, Mareš M. Two secreted cystatins of the soft tick PubMed DOI

Yamaji K, Tsuji N, Miyoshi T, Hatta T, Alim MA, Anisuzzaman K. Hlcyst-1 and Hlcyst-2 are potential inhibitors of hlcpl-A in the midgut of the ixodid tick PubMed DOI

Bode W, Engh R, Musil D, Thiele U, Huber R, Karshikov A. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. (1988) 7:2593–9. doi:  10.1002/j.1460-2075.1988.tb03109.x, PMID: PubMed DOI PMC

Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp. (2003) 70:179–99. doi:  10.1042/bss0700179, PMID: PubMed DOI

Bode W, Engh R, Musil D, Laber B, Stubbs M, Huber R. Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction. Biol Chem Hoppe Seyler. (1990) 371 Suppl:111–8., PMID: PubMed

Sá-Nunes A, Bafica A, Antonelli LR, Choi EY, Francischetti IM, Andersen JF. The immunomodulatory action of Sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol. (2009) 182:7422–9. doi:  10.4049/jimmunol.0900075, PMID: PubMed DOI PMC

Zavašnik-Bergant T, Vidmar R, Sekirnik A, Fonović M, Salát J, Grunclová L. Salivary tick cystatin Omc2 targets lysosomal cathepsins S and C in human dendritic cells. Front Cell Infect Microbiol. (2017) 7:P. 288. doi:  10.3389/fcimb.2017.00288, PMID: PubMed DOI PMC

Sá-Nunes A, Oliveira CJF. Dendritic cells as A disputed fortress on the tick-host battlefield. Trends Parasitol. (2021) 37:340–354. doi:  10.1016/j.pt.2020.11.004, PMID: PubMed DOI

Hsing LC, Rudensky AY. The lysosomal cysteine proteases in mhc class ii antigen presentation. Immunol Rev. (2005) 207:229–41. doi:  10.1111/j.0105-2896.2005.00310.x, PMID: PubMed DOI

Roche PA, Furuta K. The ins and outs of MHC class ii-mediated antigen processing and presentation. Nat Rev Immunol. (2015) 15:203–16. doi:  10.1038/nri3818, PMID: PubMed DOI PMC

Kotsyfakis M, Anderson JM, Andersen JF, Calvo E, Francischetti IM, Mather TN. Cutting edge: immunity against A “Silent” Salivary antigen of the lyme vector PubMed DOI PMC

Sá-Nunes A, Bafica A, Lucas DA, Conrads TP, Veenstra TD, Andersen JF. Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in PubMed DOI

Oliveira CJ, Sá-Nunes A, Francischetti IM, Carregaro V, Anatriello E, Silva JS. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem. (2011) 286:10960–9. doi:  10.1074/jbc.M110.205047, PMID: PubMed DOI PMC

Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol. (1993) 11:165–90. doi:  10.1146/annurev.iy.11.040193.001121, PMID: PubMed DOI

Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. (2011) 29:71–109. doi:  10.1146/annurev-immunol-031210-101312, PMID: PubMed DOI

Hartmann S, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. A filarial cysteine protease inhibitor down-regulates T cell proliferation and enhances interleukin-10 production. Eur J Immunol. (1997) 27:2253–60. doi:  10.1002/eji.1830270920, PMID: PubMed DOI

Klotz C, Ziegler T, Figueiredo AS, Rausch S, Hepworth MR, Obsivac NS. A helminth immunomodulator exploits host signaling events to regulate cytokine production in macrophages. PloS Pathog. (2011) 7:E1001248. doi:  10.1371/journal.ppat.1001248, PMID: PubMed DOI PMC

Schuijs MJ, Hartmann S, Selkirk ME, Roberts LB, Openshaw PJ, Schnoeller C. The helminth-derived immunomodulator avcystatin reduces virus enhanced inflammation by induction of regulatory IL-10+ T cells. PloS One. (2016) 11:E0161885. doi:  10.1371/journal.pone.0161885, PMID: PubMed DOI PMC

Schönemeyer A, Lucius R, Sonnenburg B, Brattig N, Sabat R, Schilling K. Modulation of human T cell responses and macrophage functions by onchocystatin, A secreted protein of the filarial nematode PubMed DOI

Jang SW, Cho MK, Park MK, Kang SA, Na BK, Ahn SC. Parasitic helminth cystatin inhibits dss-induced intestinal inflammation via IL-10(+)F4/80(+) macrophage recruitment. Korean J Parasitol. (2011) 49:245–54. doi:  10.3347/kjp.2011.49.3.245, PMID: PubMed DOI PMC

Xie H, Wu L, Chen X, Gao S, Li H, Yuan Y. Cystatin alleviates sepsis through activating regulatory macrophages. Front Cell Infect Microbiol. (2021) 11:P. 617461. doi:  10.3389/fcimb.2021.617461, PMID: PubMed DOI PMC

Li H, Qiu D, Yuan Y, Wang X, Wu F, Yang H. PubMed DOI

Wu H, Jmel MA, Chai J, Tian M, Xu X, Hui Y. Tick cysteine protease inhibitors suppress immune responses in mannan-induced psoriasis-like inflammation. Front Immunol. (2024) 15:P. 1344878. doi:  10.3389/fimmu.2024.1344878, PMID: PubMed DOI PMC

Tatchell RJ, Moorhouse DE. Neutrophils: their role in the formation of a tick feeding lesion. Science. (1970) 167:1002–3. doi:  10.1126/science.167.3920.1002, PMID: PubMed DOI

Brown SJ, Knapp FW. PubMed DOI

Brown SJ. Antibody- and cell-mediated immune resistance by Guinea pigs to adult PubMed DOI

Brown SJ, Worms MJ, Askenase PW. PubMed DOI

Chudzinski-Tavassi AM, De-Sá-Júnior PL, Simons SM, Maria DA, de Souza Ventura J, Batista IF. A new tick kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon. (2010) 56:1145–54. doi:  10.1016/j.toxicon.2010.04.019, PMID: PubMed DOI

Maria DA, Will SE, Bosch AL, Souza JV, Sciani JM, Goldfeder MB. Preclinical evaluation of Amblyomin-X, A Kunitz-type protease inhibitor with antitumor activity. Toxicol Rep. (2019) 6:51–63. doi:  10.1016/j.toxrep.2018.11.014, PMID: PubMed DOI PMC

Franck C, Foster SR, Johansen-Leete J, Chowdhury S, Cielesh M, Bhusal RP. Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proc Natl Acad Sci U.S.A. (2020) 117:12657–12664. doi:  10.1073/pnas.2000605117, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...