MicroRNA regulates the toxicological mechanism of four mycotoxins in vivo and in vitro

. 2022 Feb 24 ; 13 (1) : 37. [epub] 20220224

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35197116

Grantová podpora
2017YFC1600304 National Basic Research Program of China (973 Program)
grants No. 31872538; grants No. 31972746; grants No. 31772809 National Natural Science Foundation of China
2019-ZD-0708 Liaoning Provincial Natural Fund Guidance Program Project
2016T90477 China Postdoctoral Science Foundation
VT2019-2021 UHK CEP - Centrální evidence projektů
MH CZ - DRO (UHHK, 00179906) Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 35197116
PubMed Central PMC8867758
DOI 10.1186/s40104-021-00653-4
PII: 10.1186/s40104-021-00653-4
Knihovny.cz E-zdroje

Mycotoxins can cause body poisoning and induce carcinogenesis, often with a high mortality rate. Therefore, it is of great significance to seek new targets that indicate mycotoxin activity and to diagnose and intervene in mycotoxin-induced diseases in their early stages. MicroRNAs (miRNAs) are physiological regulators whose dysregulation is closely related to the development of diseases. They are thus important markers for the occurrence and development of diseases. In this review, consideration is given to the toxicological mechanisms associated with four major mycotoxins (ochratoxin A, aflatoxin B1, deoxynivalenol, and zearalenone). The roles that miRNAs play in these mechanisms and the interactions between them and their target genes are explained, and summarize the important role of histone modifications in their toxicity. As a result, the ways that miRNAs are regulated in the pathogenicity signaling pathways are revealed which highlights the roles played by miRNAs in preventing and controlling the harmful effects of the mycotoxins. It is hoped that this review will provide a theoretical basis for the prevention and control of the damage caused by these mycotoxins.

Zobrazit více v PubMed

Magan N, Aldred D. Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol. 2007;119(1–2):131–139. doi: 10.1016/j.ijfoodmicro.2007.07.034. PubMed DOI

Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited 'FAO estimate' of 25. Crit Rev Food Sci Nutr. 2020;60(16):2773–2789. doi: 10.1080/10408398.2019.1658570. PubMed DOI

Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, et al. Occurrence of aflatoxin B (1), deoxynivalenol and zearalenone in feeds in China during 2018-2020. J Anim Sci Biotechnol. 2021;12:74. 10.1186/s40104-021-00603-0. PubMed PMC

Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF. Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins (Basel). 2015;7(8):3057–3111. doi: 10.3390/toxins7083057. PubMed DOI PMC

Prosperini A, Font G, Ruiz MJ. Interaction effects of fusarium enniatins (a, A1, B and B1) combinations on in vitro cytotoxicity of Caco-2 cells. Toxicol in Vitro. 2014;28(1):88–94. doi: 10.1016/j.tiv.2013.06.021. PubMed DOI

Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The significance of regulatory MicroRNAs: their roles in Toxicodynamics of mycotoxins and in the protection offered by dietary therapeutics against mycotoxin-induced toxicity. Compr Rev Food Sci Food Saf. 2019;18(1):48–66. doi: 10.1111/1541-4337.12412. PubMed DOI

Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature. 2007;447(7148):1126–1129. doi: 10.1038/nature05903. PubMed DOI

Gareev IF, Beilerly OA, Nazarov VV. MicroRNA and their potential role in the pathogenesis of hemorrhagic stroke. Zh Vopr Neirokhir Im N N Burdenko. 2020;84(1):86–93. doi: 10.17116/neiro20208401186. PubMed DOI

Liu H, Wang L, Li F, Jiang Y, Guan H, Wang D, Sun-Waterhouse D, Wu M, Li D. The synergistic protection of EGCG and quercetin against streptozotocin (STZ)-induced NIT-1 pancreatic β cell damage via upregulation of BCL-2 expression by miR-16-5p. J Nutr Biochem. 2021;96:108748. doi: 10.1016/j.jnutbio.2021.108748. PubMed DOI

Wang B, Cui Y, Zhang Q, Wang S, Xu S. Selenomethionine alleviates LPS-induced JNK/NLRP3 inflammasome-dependent necroptosis by modulating miR-15a and oxidative stress in chicken lungs. Metallomics. 2021;13(8):mfab048. 10.1093/mtomcs/mfab048. PubMed

Wang F, Fan K, Zhao Y, Xie ML. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-ski/Smad pathway. J Ethnopharmacol. 2021;265:113195. doi: 10.1016/j.jep.2020.113195. PubMed DOI

Yuan L, Li Q, Zhang Z, Liu Q, Wang X, Fan L. Tanshinone IIA inhibits the adipogenesis and inflammatory response in ox-LDL-challenged human monocyte-derived macrophages via regulating miR-130b/WNT5A. J Cell Biochem. 2020;121(2):1400–1408. doi: 10.1002/jcb.29375. PubMed DOI

Qu S, Shen Y, Wang M, Wang X, Yang Y. Suppression of miR-21 and miR-155 of macrophage by cinnamaldehyde ameliorates ulcerative colitis. Int Immunopharmacol. 2019;67:22–34. doi: 10.1016/j.intimp.2018.11.045. PubMed DOI

Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Marin DE, Braicu C, Dumitrescu G, Pistol GC, Cojocneanu R, Neagoe IB, Taranu I. MicroRNA profiling in kidney in pigs fed ochratoxin a contaminated diet. Ecotoxicol Environ Saf. 2019;184:109637. doi: 10.1016/j.ecoenv.2019.109637. PubMed DOI

Schulz MC, Gekle M, Schwerdt G. Epithelial-fibroblast cross talk aggravates the impact of the nephrotoxin ochratoxin a. Biochim Biophys Acta Mol Cell Res. 2019;1866(12):118528. doi: 10.1016/j.bbamcr.2019.118528. PubMed DOI

Stachurska A, Ciesla M, Kozakowska M, Wolffram S, Boesch-Saadatmandi C, Rimbach G, Jozkowicz A, Dulak J, Loboda A. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol Nutr Food Res. 2013;57(3):504–515. doi: 10.1002/mnfr.201200456. PubMed DOI

Dai Q, Zhao J, Qi X, Xu W, He X, Guo M, Dweep H, Cheng WH, Luo Y, Xia K, Gretz N, Huang K. MicroRNA profiling of rats with ochratoxin a nephrotoxicity. BMC Genomics. 2014;15(1):333. doi: 10.1186/1471-2164-15-333. PubMed DOI PMC

Wang M, Wu W, Li L, He J, Huang S, Chen S, et al. Analysis of the miRNA expression profiles in the zearalenone-exposed TM3 Leydig cell line. Int J Mol Sci. 2019;20(3):635. 10.3390/ijms20030635. PubMed PMC

Grenier B, Hackl M, Skalicky S, Thamhesl M, Moll WD, Berrios R, Schatzmayr G, Nagl V. MicroRNAs in porcine uterus and serum are affected by zearalenone and represent a new target for mycotoxin biomarker discovery. Sci Rep. 2019;9(1):9408. doi: 10.1038/s41598-019-45784-x. PubMed DOI PMC

Brzuzan P, Woźny M, Wolińska-Nizioł L, Piasecka A, Florczyk M, Jakimiuk E, Góra M, Łuczyński MK, Gajecki M. MicroRNA expression profiles in liver and colon of sexually immature gilts after exposure to fusarium mycotoxins. Pol J Vet Sci. 2015;18(1):29–38. doi: 10.1515/pjvs-2015-0004. PubMed DOI

Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Profound changes in miRNA expression during cancer initiation by aflatoxin B (1) and their abrogation by the chemopreventive triterpenoid CDDO-Im. Mol Carcinog. 2017;56(11):2382–2390. doi: 10.1002/mc.22635. PubMed DOI PMC

Yang W, Lian J, Feng Y, Srinivas S, Guo Z, Zhong H, Zhuang Z, Wang S. Genome-wide miRNA-profiling of aflatoxin B1-induced hepatic injury using deep sequencing. Toxicol Lett. 2014;226(2):140–149. doi: 10.1016/j.toxlet.2014.01.021. PubMed DOI

Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Serum miR-182 is a predictive biomarker for dichotomization of risk of hepatocellular carcinoma in rats. Mol Carcinog. 2019;58(11):2017–2025. doi: 10.1002/mc.23093. PubMed DOI PMC

Liu C, Yu H, Zhang Y, Li D, Xing X, Chen L, Zeng X, Xu D, Fan Q, Xiao Y, Chen W, Wang Q. Upregulation of miR-34a-5p antagonizes AFB1-induced genotoxicity in F344 rat liver. Toxicon. 2015;106:46–56. doi: 10.1016/j.toxicon.2015.09.016. PubMed DOI

Xie MY, Chen T, Xi QY, Hou LJ, Luo JY, Zeng B, Li M, Sun JJ, Zhang YL. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage. Biochem Pharmacol. 2020;175:113898. doi: 10.1016/j.bcp.2020.113898. PubMed DOI

Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: biomarkers of disease. Clin Chim Acta. 2021;516:46–54. doi: 10.1016/j.cca.2021.01.008. PubMed DOI

Zhu L, Zhang B, Dai Y, Li H, Xu W. A review: Epigenetic mechanism in ochratoxin a toxicity studies. Toxins (Basel). 2017;9(4):113. 10.3390/toxins9040113. PubMed PMC

Gan F, Zhou Y, Hu Z, Hou L, Chen X, Xu S, Huang K. GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage. Int J Biol Macromol. 2020;146:18–24. doi: 10.1016/j.ijbiomac.2019.11.221. PubMed DOI

Cavin C, Delatour T, Marin-Kuan M, Fenaille F, Holzhäuser D, Guignard G, Bezençon C, Piguet D, Parisod V, Richoz-Payot J, Schilter B. Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci. 2009;110(1):84–94. doi: 10.1093/toxsci/kfp090. PubMed DOI

Kumar M, Dwivedi P, Sharma AK, Sankar M, Patil RD, Singh ND. Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicol Ind Health. 2014;30(1):90–98. doi: 10.1177/0748233712452598. PubMed DOI

Meki ARMA, Hussein AAA. Melatonin reduces oxidative stress induced by ochratoxin A in rat liver and kidney. Comp Biochem Physiol C Toxicol Pharmacol. 2001;130(3):305–13. 10.1016/S1532-0456(01)00248-4. PubMed

Gan F, Zhou Y, Hou L, Qian G, Chen X, Huang K. Ochratoxin a induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes. Chemosphere. 2017;182:630–637. doi: 10.1016/j.chemosphere.2017.05.030. PubMed DOI

Gekle M, Schwerdt G, Freudinger R, Mildenberger S, Wilflingseder D, Pollack V, Dander M, Schramek H. Ochratoxin a induces JNK activation and apoptosis in MDCK-C7 cells at nanomolar concentrations. J Pharmacol Exp Ther. 2000;293(3):837–844. PubMed

Shin HS, Lee HJ, Pyo MC, Ryu D, Lee KW. Ochratoxin A-induced hepatotoxicity through phase I and phase II reactions regulated by AhR in liver cells. Toxins (Basel). 2019;11(7):377. 10.3390/toxins11070377. PubMed PMC

Raghubeer S, Nagiah S, Chuturgoon AA. Acute Ochratoxin a exposure induces inflammation and apoptosis in human embryonic kidney (HEK293) cells. Toxicon. 2017;137:48–53. doi: 10.1016/j.toxicon.2017.07.013. PubMed DOI

Özcan Z, Gül G, Yaman I. Ochratoxin a activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells. Arch Toxicol. 2015;89(8):1313–1327. doi: 10.1007/s00204-014-1311-x. PubMed DOI

Qian G, Liu D, Hou L, Hamid M, Chen X, Gan F, Song S, Huang K. Ochratoxin a induces cytoprotective autophagy via blocking AKT/mTOR signaling pathway in PK-15 cells. Food Chem Toxicol. 2018;122:120–131. doi: 10.1016/j.fct.2018.09.070. PubMed DOI

Li Z, Zhang X. Kinases involved in both autophagy and mitosis. Int J Mol Sci. 2017;18(9):1884. 10.3390/ijms18091884. PubMed PMC

Shen XL, Zhang B, Liang R, Cheng WH, Xu W, Luo Y, Zhao C, Huang K. Central role of nix in the autophagic response to ochratoxin a. Food Chem Toxicol. 2014;69:202–209. doi: 10.1016/j.fct.2014.04.017. PubMed DOI

Gong L, Zhu H, Li T, Ming G, Duan X, Wang J, Jiang Y. Molecular signatures of cytotoxic effects in human embryonic kidney 293 cells treated with single and mixture of ochratoxin a and citrinin. Food Chem Toxicol. 2019;123:374–384. doi: 10.1016/j.fct.2018.11.015. PubMed DOI

Hennemeier I, Humpf HU, Gekle M, Schwerdt G. The food contaminant and nephrotoxin ochratoxin a enhances Wnt1 inducible signaling protein 1 and tumor necrosis factor-α expression in human primary proximal tubule cells. Mol Nutr Food Res. 2012;56(9):1375–1384. doi: 10.1002/mnfr.201200164. PubMed DOI

Bui-Klimke TR, Wu F. Ochratoxin a and human health risk: a review of the evidence. Crit Rev Food Sci Nutr. 2015;55(13):1860–1869. doi: 10.1080/10408398.2012.724480. PubMed DOI PMC

Neuen BL, Chadban SJ, Demaio AR, Johnson DW, Perkovic V. Chronic kidney disease and the global NCDs agenda. BMJ Glob Health. 2017;2(2):e000380. doi: 10.1136/bmjgh-2017-000380. PubMed DOI PMC

Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics. 2012;44(4):259–267. doi: 10.1152/physiolgenomics.00173.2011. PubMed DOI PMC

Hennemeier I, Humpf HU, Gekle M, Schwerdt G. Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells. Toxicology. 2014;324:116–122. doi: 10.1016/j.tox.2014.07.012. PubMed DOI

Wu TS, Lin YT, Huang YT, Yu FY, Liu BH. Ochratoxin a triggered intracerebral hemorrhage in embryonic zebrafish: involvement of microRNA-731 and prolactin receptor. Chemosphere. 2020;242:125143. doi: 10.1016/j.chemosphere.2019.125143. PubMed DOI

Loboda A, Stachurska A, Sobczak M, Podkalicka P, Mucha O, Jozkowicz A, Dulak J. Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology. 2017;389:42–52. doi: 10.1016/j.tox.2017.07.004. PubMed DOI

Chen R, Deng L, Yu X, Wang X, Zhu L, Yu T, Zhang Y, Zhou B, Xu W, Chen L, Luo H. MiR-122 partly mediates the ochratoxin A-induced GC-2 cell apoptosis. Toxicol In Vitro. 2015;30(1 Pt B):264–273. doi: 10.1016/j.tiv.2015.10.011. PubMed DOI

Chrun ES, Modolo F, Daniel FI. Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract. 2017;213(11):1329–1339. doi: 10.1016/j.prp.2017.06.013. PubMed DOI

Limbeck E, Vanselow JT, Hofmann J, Schlosser A, Mally A. Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin a. Arch Toxicol. 2018;92(2):995–1014. doi: 10.1007/s00204-017-2107-6. PubMed DOI

Akpinar HA, Kahraman H, Yaman I. Ochratoxin A sequentially activates autophagy and the ubiquitin-proteasome system. Toxins (Basel). 2019;11(11):615. 10.3390/toxins11110615. PubMed PMC

Lin L, White SA, Hu K. Role of p90RSK in kidney and other diseases. Int J Mol Sci. 2019;20(4):972. 10.3390/ijms20040972. PubMed PMC

Kujawa MJMN, Research F. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 56. Herausgegeben von der Int Agency Res Cancer Wo. 2010;38(3):351.

Valencia-Quintana R, Milić M, Jakšić D, Šegvić Klarić M, Tenorio-Arvide MG, Pérez-Flores GA, et al. Environment changes, aflatoxins, and health Issues, a review. Int J Environ Res Public Health. 2020;17(21):7850. 10.3390/ijerph17217850. PubMed PMC

Zhang Z, Tang D, Wang B, Wang Z, Liu M. Analysis of miRNA-mRNA regulatory network revealed key genes induced by aflatoxin B1 exposure in primary human hepatocytes. Mol Genet Genomic Med. 2019;7(11):e971. doi: 10.1002/mgg3.971. PubMed DOI PMC

St John N, Freedland J, Baldino H, Doyle F, Cera C, Begley T, et al. Genome profiling for aflatoxin B (1) resistance in Saccharomyces cerevisiae reveals a role for the CSM2/SHU complex in tolerance of aflatoxin B (1)-associated DNA damage. G3 (Bethesda). 2020;10(11):3929–47. 10.1534/g3.120.401723. PubMed PMC

Liu J, Wang QC, Han J, Xiong B, Sun SC. Aflatoxin B1 is toxic to porcine oocyte maturation. Mutagenesis. 2015;30(4):527–535. doi: 10.1093/mutage/gev015. PubMed DOI

Kim KW, Kim N, Choi Y, Kim WS, Yoon H, Shin CM, Park YS, Lee DH, Park YS, Ahn SH, Park DJ, Kim HH, Lee HS, Kim JW, Kim JW, Lee KW, Chang W, Park JH, Lee YJ, Lee KH, Kim YH. Different effects of p53 protein overexpression on the survival of gastric cancer patients according to Lauren histologic classification: a retrospective study. Gastric Cancer. 2021;24(4):844–857. doi: 10.1007/s10120-021-01163-y. PubMed DOI

Chen Y, Liu Y. Non-coplanar and coplanar polychlorinated biphenyls potentiate genotoxicity of aflatoxin B1 in a human hepatocyte line by enhancing CYP1A2 and CYP3A4 expression. Environ Pollut. 2019;246:945–954. doi: 10.1016/j.envpol.2018.12.041. PubMed DOI

Abrar M, Anjum FM, Butt MS, Pasha I, Randhawa MA, Saeed F, Waqas K. Aflatoxins: biosynthesis, occurrence, toxicity, and remedies. Crit Rev Food Sci Nutr. 2013;53(8):862–874. doi: 10.1080/10408398.2011.563154. PubMed DOI

Ferreira RG, Cardoso MV, de Souza FKM, Espíndola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res. 2019;204:51–71. doi: 10.1016/j.trsl.2018.09.001. PubMed DOI

Dey DK, Kang SC. Aflatoxin B1 induces reactive oxygen species-dependent caspase-mediated apoptosis in normal human cells, inhibits Allium cepa root cell division, and triggers inflammatory response in zebrafish larvae. Sci Total Environ. 2020;737:139704. doi: 10.1016/j.scitotenv.2020.139704. PubMed DOI

Caloni F, Cortinovis C. Toxicological effects of aflatoxins in horses. Vet J. 2011;188(3):270–273. doi: 10.1016/j.tvjl.2010.06.002. PubMed DOI

van Gijssel HE, Maassen CB, Mulder GJ, Meerman JH. p53 protein expression by hepatocarcinogens in the rat liver and its potential role in mitoinhibition of normal hepatocytes as a mechanism of hepatic tumour promotion. Carcinogenesis. 1997;18(5):1027–1033. doi: 10.1093/carcin/18.5.1027. PubMed DOI

Zhu L, Gao J, Huang K, Luo Y, Zhang B, Xu W. miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep. 2015;5:16732. doi: 10.1038/srep16732. PubMed DOI PMC

Liu YX, Long XD, Xi ZF, Ma Y, Huang XY, Yao JG, Wang C, Xing TY, Xia Q. MicroRNA-24 modulates aflatoxin B1-related hepatocellular carcinoma prognosis and tumorigenesis. Biomed Res Int. 2014;2014:482926. doi: 10.1155/2014/482926. PubMed DOI PMC

Zeng C, Wang R, Li D, Lin XJ, Wei QK, Yuan Y, Wang Q, Chen W, Zhuang SM. A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma. Hepatology. 2010;52(5):1702–1712. doi: 10.1002/hep.23875. PubMed DOI

Fang Y, Feng Y, Wu T, Srinivas S, Yang W, Fan J, Yang C, Wang S. Aflatoxin B1 negatively regulates Wnt/β-catenin signaling pathway through activating miR-33a. PLoS One. 2013;8(8):e73004. doi: 10.1371/journal.pone.0073004. PubMed DOI PMC

Wang Y, Zhang Z, Wang H, Zhang Y, Ji M, Xu H, Wang C, Sun Z, Gao W, Wang SL. miR-138-1* regulates aflatoxin B1-induced malignant transformation of BEAS-2B cells by targeting PDK1. Arch Toxicol. 2016;90(5):1239–1249. doi: 10.1007/s00204-015-1551-4. PubMed DOI

Huang XY, Yao JG, Huang HD, Wang C, Ma Y, Xia Q, Long XD. MicroRNA-429 modulates hepatocellular carcinoma prognosis and tumorigenesis. Gastroenterol Res Pract. 2013;2013:804128–804110. doi: 10.1155/2013/804128. PubMed DOI PMC

Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS One. 2013;8(5):e62589. doi: 10.1371/journal.pone.0062589. PubMed DOI PMC

Yan B, Zhao LH, Guo JT, Zhao JL. miR-429 regulation of osmotic stress transcription factor 1 (OSTF1) in tilapia during osmotic stress. Biochem Biophys Res Commun. 2012;426(3):294–298. doi: 10.1016/j.bbrc.2012.08.029. PubMed DOI

Dai Y, Huang K, Zhang B, Zhu L, Xu W. Aflatoxin B1-induced epigenetic alterations: An overview. Food Chem Toxicol. 2017;109(Pt 1):683–689. doi: 10.1016/j.fct.2017.06.034. PubMed DOI

Zhu CC, Hou YJ, Han J, Liu HL, Cui XS, Kim NH, Sun SC. Effect of mycotoxin-containing diets on epigenetic modifications of mouse oocytes by fluorescence microscopy analysis. Microsc Microanal. 2014;20(4):1158–1166. doi: 10.1017/s1431927614000919. PubMed DOI

Cheng L, Qin Y, Hu X, Ren L, Zhang C, Wang X, Wang W, Zhang Z, Hao J, Guo M, Wu Z, Tian J, An L. Melatonin protects in vitro matured porcine oocytes from toxicity of aflatoxin B1. J Pineal Res. 2019;66(4):e12543. doi: 10.1111/jpi.12543. PubMed DOI

Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: a kinase to remember. Front Mol Neurosci. 2018;11:480. doi: 10.3389/fnmol.2018.00480. PubMed DOI PMC

Liu N, Yang Y, Chen J, Jia H, Zhang Y, Jiang D, Wu G, Wu Z. 3-Acetyldeoxynivalenol induces lysosomal membrane permeabilization-mediated apoptosis and inhibits autophagic flux in macrophages. Environ Pollut. 2020;265(Pt B):114697. doi: 10.1016/j.envpol.2020.114697. PubMed DOI

Kövesi B, Kulcsár S, Zándoki E, Szabó-Fodor J, Mézes M, Balogh K, Ancsin Z, Pelyhe C. Short-term effects of deoxynivalenol, T-2 toxin, fumonisin B1 or ochratoxin on lipid peroxidation and glutathione redox system and its regulatory genes in common carp (Cyprinus carpio L.) liver. Fish Physiol Biochem. 2020;46(6):1921–1932. doi: 10.1007/s10695-020-00845-1. PubMed DOI PMC

He C, Zhou Y, Lin X, Duan N, Wang Z, Wu S. Deoxynivalenol-induced cell apoptosis monitoring using a cytochrome c-specific fluorescent probe based on a photoinduced electron transfer reaction. J Hazard Mater. 2021;415:125638. doi: 10.1016/j.jhazmat.2021.125638. PubMed DOI

Wang X, Xu W, Fan M, Meng T, Chen X, Jiang Y, Zhu D, Hu W, Gong J, Feng S, Wu J, Li Y. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Environ Toxicol Pharmacol. 2016;43:193–202. doi: 10.1016/j.etap.2016.03.016. PubMed DOI

Pizzo F, Caloni F, Schreiber NB, Cortinovis C, Spicer LJ. In vitro effects of deoxynivalenol and zearalenone major metabolites alone and combined, on cell proliferation, steroid production and gene expression in bovine small-follicle granulosa cells. Toxicon. 2016;109:70–83. doi: 10.1016/j.toxicon.2015.11.018. PubMed DOI

Gilam A, Shai A, Ashkenazi I, Sarid LA, Drobot A, Bickel A, Shomron N. MicroRNA regulation of progesterone receptor in breast cancer. Oncotarget. 2017;8(16):25963–25976. doi: 10.18632/oncotarget.15657. PubMed DOI PMC

Yang GH, Jarvis BB, Chung YJ, Pestka JJ. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol. 2000;164(2):149–160. doi: 10.1006/taap.1999.8888. PubMed DOI

Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 2014;6(12):3406–3425. doi: 10.3390/toxins6123406. PubMed DOI PMC

Chen Z, Zhuang W, Wang Z, Xiao W, Don W, Li X, Chen X. MicroRNA-450b-3p inhibits cell growth by targeting phosphoglycerate kinase 1 in hepatocellular carcinoma. J Cell Biochem. 2019;120(11):18805–18815. doi: 10.1002/jcb.29196. PubMed DOI

Liao Y, Peng Z, Wang L, Li D, Yue J, Liu J, Liang C, Liu S, Yan H, Nüssler AK, Rong S, Liu L, Hao L, Yang W. Long noncoding RNA Gm20319, acting as competing endogenous RNA, regulated GNE expression by sponging miR-7240-5p to involve in deoxynivalenol-induced liver damage in vitro. Food Chem Toxicol. 2020;141:111435. doi: 10.1016/j.fct.2020.111435. PubMed DOI

Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–1920. doi: 10.1016/j.jprot.2010.06.006. PubMed DOI

Ehrlich KC, Daigle KW. Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochim Biophys Acta. 1987;923(2):206–13. 10.1016/0304-4165(87)90005-5. PubMed

Reznikov EA, Comstock SS, Yi C, Contractor N, Donovan SM. Dietary bovine lactoferrin increases intestinal cell proliferation in neonatal piglets. J Nutr. 2014;144(9):1401–1408. doi: 10.3945/jn.114.196568. PubMed DOI

Chen T, Xi QY, Ye RS, Cheng X, Qi QE, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Zhang YL. Exploration of microRNAs in porcine milk exosomes. BMC Genomics. 2014;15(1):100. doi: 10.1186/1471-2164-15-100. PubMed DOI PMC

Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr Metab (Lond) 2017;14:55. doi: 10.1186/s12986-017-0212-4. PubMed DOI PMC

Han J, Wang QC, Zhu CC, Liu J, Zhang Y, Cui XS, Kim NH, Sun SC. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation. Toxicol Appl Pharmacol. 2016;300:70–76. doi: 10.1016/j.taap.2016.03.006. PubMed DOI

Hu LL, Liao BY, Wei JX, Ling YL, Wei YX, Liu ZL, Luo XQ, Wang JL. Podophyllotoxin exposure causes spindle defects and DNA damage-induced apoptosis in mouse fertilized oocytes and early embryos. Front Cell Dev Biol. 2020;8:600521. doi: 10.3389/fcell.2020.600521. PubMed DOI PMC

Bulgaru CV, Marin DE, Pistol GC, Taranu I. Zearalenone and the immune response. Toxins (Basel). 2021;13(4):248. 10.3390/toxins13040248. PubMed PMC

Liu X, Xu C, Yang Z, Yang W, Huang L, Wang S, et al. Effects of dietary zearalenone exposure on the growth performance, small intestine disaccharidase, and antioxidant activities of weaned gilts. Animals (Basel). 2020;10(11):2157. 10.3390/ani10112157. PubMed PMC

Zhou Y, Zhang D, Sun D, Cui S. Zearalenone affects reproductive functions of male offspring via transgenerational cytotoxicity on spermatogonia in mouse. Comp Biochem Physiol C Toxicol Pharmacol. 2020;234:108766. doi: 10.1016/j.cbpc.2020.108766. PubMed DOI

Yang R, Wang YM, Zhang L, Zhao ZM, Zhao J, Peng SQ. Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Mol Cell Endocrinol. 2016;437:62–74. doi: 10.1016/j.mce.2016.08.012. PubMed DOI

Fu G, Wang L, Li L, Liu J, Liu S, Zhao X. Bacillus licheniformis CK1 alleviates the toxic effects of zearalenone in feed on weaned female Tibetan piglets. J Anim Sci. 2018;96(10):4471–4480. doi: 10.1093/jas/sky301. PubMed DOI PMC

Chen F, Wen X, Lin P, Chen H, Wang A, Jin Y. HERP depletion inhibits zearalenone-induced apoptosis through autophagy activation in mouse ovarian granulosa cells. Toxicol Lett. 2019;301:1–10. doi: 10.1016/j.toxlet.2018.10.026. PubMed DOI

Lai FN, Liu XL, Li N, Zhang RQ, Zhao Y, Feng YZ, Nyachoti CM, Shen W, Li L. Phosphatidylcholine could protect the defect of zearalenone exposure on follicular development and oocyte maturation. Aging (Albany NY) 2018;10(11):3486–3506. doi: 10.18632/aging.101660. PubMed DOI PMC

Wang M, Wang N, Tong J, Pan J, Long M, Li P. Transcriptome analysis to identify the Ras and Rap1 signal pathway genes involved in the response of TM3 Leydig cells exposed to zearalenone. Environ Sci Pollut Res Int. 2018;25(31):31230–31239. doi: 10.1007/s11356-018-3129-1. PubMed DOI

Denli M, Blandon JC, Guynot ME, Salado S, Pérez JF. Efficacy of activated diatomaceous clay in reducing the toxicity of zearalenone in rats and piglets. J Anim Sci. 2015;93(2):637–645. doi: 10.2527/jas.2014-7356. PubMed DOI

Gajecki M, Przybyłowicz M, Zielonka L, Zwierzchowski W, Obremski K, Skorska-Wyszyńska E, Gajecka M, Polak M, Jakimiuk E. Preliminary results of monitoring research on zearalenone presence in blood of women with neoplastic lesions in reproductive system. Pol J Vet Sci. 2004;7(2):153–156. PubMed

Liu C, Chang J, Wang P, Yin Q, Huang W, Dang X, et al. Zearalenone biodegradation by the combination of probiotics with cell-free extracts of Aspergillus oryzae and its mycotoxin-alleviating effect on pig production performance. Toxins (Basel). 2019;11(10):552. 10.3390/toxins11100552. PubMed PMC

Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb) 2014;24(3):329–342. doi: 10.11613/bm.2014.035. PubMed DOI PMC

Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol. 2015;418 Pt 3(0 3):273–297. doi: 10.1016/j.mce.2015.01.035. PubMed DOI PMC

He J, Zhang J, Wang Y, Liu W, Gou K, Liu Z, Cui S. MiR-7 mediates the Zearalenone signaling pathway regulating FSH synthesis and secretion by targeting FOS in female pigs. Endocrinology. 2018;159(8):2993–3006. doi: 10.1210/en.2018-00097. PubMed DOI

Márton É, Varga A, Széles L, Göczi L, Penyige A, Nagy B, et al. The cell-free expression of miR200 family members correlates with estrogen sensitivity in human epithelial ovarian cells. Int J Mol Sci. 2020;21(24):9725. 10.3390/ijms21249725. PubMed PMC

Tian Y, Zhang MY, Li N, Wang JJ, Ge W, Tan SJ, Shen W, Li L. Zearalenone exposure triggered porcine granulosa cells apoptosis via microRNAs-mediated focal adhesion pathway. Toxicol Lett. 2020;330:80–89. doi: 10.1016/j.toxlet.2020.05.009. PubMed DOI

Gnad F, Young A, Zhou W, Lyle K, Ong CC, Stokes MP, et al. Systems-wide analysis of K-Ras, Cdc42, and PAK4 signaling by quantitative phosphoproteomics. Mol Cell Proteomics. 2013;12(8):2070–80. 10.1074/mcp.M112.027052. PubMed PMC

Ge SQ, Lin SL, Zhao ZH, Sun QY. Epigenetic dynamics and interplay during spermatogenesis and embryogenesis: implications for male fertility and offspring health. Oncotarget. 2017;8(32):53804–53818. doi: 10.18632/oncotarget.17479. PubMed DOI PMC

Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao XY, Sha J, Zhou Q. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18(3):330–340. doi: 10.1016/j.stem.2016.01.017. PubMed DOI

Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum Reprod. 2017;32(12):2443–2455. doi: 10.1093/humrep/dex317. PubMed DOI

Men Y, Zhao Y, Zhang P, Zhang H, Gao Y, Liu J, Feng Y, Li L, Shen W, Sun Z, Min L. Gestational exposure to low-dose zearalenone disrupting offspring spermatogenesis might be through epigenetic modifications. Basic Clin Pharmacol Toxicol. 2019;125(4):382–393. doi: 10.1111/bcpt.13243. PubMed DOI

Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25(8):781–788. doi: 10.1101/gad.2027411. PubMed DOI PMC

Audergon PN, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL, Allshire RC. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science. 2015;348(6230):132–135. doi: 10.1126/science.1260638. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...