Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptide-based substrates and covalent inhibitors
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/16_019/0000729
ChemBioDrug - International
SHDF 099950
Royal Society - International
RVO 61388963
European Regional Development Fund - International
FC001043
Cancer Research UK - United Kingdom
FC001043
Medical Research Council - United Kingdom
SHDF 099950
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
FC001043
Wellcome Trust - United Kingdom
Erasmus - International
PubMed
31177613
PubMed Central
PMC6851853
DOI
10.1111/febs.14953
Knihovny.cz E-zdroje
- Klíčová slova
- dipeptidyl aminopeptidase, malaria, positional scanning, proteases, specificity,
- MeSH
- aminokyseliny chemie MeSH
- dipeptidylpeptidasy a tripeptidylpeptidasy metabolismus MeSH
- erytrocyty účinky léků metabolismus parazitologie MeSH
- inhibitory proteas farmakologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- peptidové fragmenty metabolismus MeSH
- Plasmodium falciparum účinky léků růst a vývoj metabolismus MeSH
- substrátová specifita MeSH
- tropická malárie farmakoterapie metabolismus parazitologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- dipeptidyl peptidase III MeSH Prohlížeč
- dipeptidylpeptidasy a tripeptidylpeptidasy MeSH
- inhibitory proteas MeSH
- peptidové fragmenty MeSH
Malarial dipeptidyl aminopeptidases (DPAPs) are cysteine proteases important for parasite development thus making them attractive drug targets. In order to develop inhibitors specific to the parasite enzymes, it is necessary to map the determinants of substrate specificity of the parasite enzymes and its mammalian homologue cathepsin C (CatC). Here, we screened peptide-based libraries of substrates and covalent inhibitors to characterize the differences in specificity between parasite DPAPs and CatC, and used this information to develop highly selective DPAP1 and DPAP3 inhibitors. Interestingly, while the primary amino acid specificity of a protease is often used to develop potent inhibitors, we show that equally potent and highly specific inhibitors can be developed based on the sequences of nonoptimal peptide substrates. Finally, our homology modelling and docking studies provide potential structural explanations of the differences in specificity between DPAP1, DPAP3, and CatC, and between substrates and inhibitors in the case of DPAP3. Overall, this study illustrates that focusing the development of protease inhibitors solely on substrate specificity might overlook important structural features that can be exploited to develop highly potent and selective compounds.
Chemical Biology Approaches to Malaria Laboratory The Francis Crick Institute London UK
Computational Sciences GlaxoSmithKline Collegeville PA USA
Crick GSK Biomedical LinkLabs GlaxoSmithKline Stevenage UK
Department of Genetics Stanford School of Medicine Stanford CA USA
Department of Medical Microbiology Radboud University Medical Center Nijmegen The Netherlands
Department of Pathology Stanford University School of Medicine Stanford CA USA
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
World Health Organization (2017) World Malaria Report 2016, 1–186.
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes CL, Henry A, Eckhoff PA et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211. PubMed PMC
Ranson H & Lissenden N (2016) Insecticide resistance in african Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol 32, 187–196. PubMed
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B et al & White NJTracking Resistance to Artemisinin Collaboration (TRAC) (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371, 411–423. PubMed PMC
Wells TNC, Hooft van Huijsduijnen R & Van Voorhis WC (2015) Malaria medicines: a glass half full? Nat Rev Drug Discov 14, 424–442. PubMed
Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J & Derisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum . PLoS Biol 1, e5–e16. PubMed PMC
Young JA, Fivelman QL, Blair PL, la Vega de P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA & Winzeler EA (2005) The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology‐based pattern identification. Mol Biochem Parasitol 143, 67–79. PubMed
Gutmann HR & Fruton JS (1948) On the proteolytic enzymes of animal tissues; an intracellular enzyme related to chymotrypsin. J Biol Chem 174, 851–858. PubMed
Wiggans DS, Winitz M & Fruton JS (1954) Action of cathepsin C on dipeptide esters. Yale J Biol Med 27, 11–19. PubMed PMC
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort A‐S, Lauritzen C et al (2018) Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 190, 202–236. PubMed
McGuire MJ, Lipsky PE & Thiele DL (1993) Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem 268, 2458–2467. PubMed
Kummer JA, Kamp AM, Citarella F, Horrevoets AJ & Hack CE (1996) Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C. J Biol Chem 271, 9281–9286. PubMed
Pham CT & Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 96, 8627–8632. PubMed PMC
Adkison AM, Raptis SZ, Kelley DG & Pham CTN (2002) Dipeptidyl peptidase I activates neutrophil‐derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109, 363–371. PubMed PMC
Guay D, Beaulieu C, Truchon J‐F, Jagadeeswar Reddy T, Zamboni R, Bayly CI, Methot N, Rubin J, Ethier D & David Percival M (2009) Design and synthesis of dipeptidyl nitriles as potent, selective, and reversible inhibitors of cathepsin C. Bioorg Med Chem Lett 19, 5392–5396. PubMed
Lainé D, Palovich M, McCleland B, Petitjean E, Delhom I, Xie H, Deng J, Lin G, Davis R, Jolit A et al (2011) Discovery of novel cyanamide‐based inhibitors of cathepsin C. ACS Med Chem Lett 2, 142–147. PubMed PMC
Furber M, Tiden A‐K, Gardiner P, Mete A, Ford R, Millichip I, Stein L, Mather A, Kinchin E, Luckhurst C et al (2014) Cathepsin C inhibitors: property optimization and identification of a clinical candidate. J Med Chem 57, 2357–2367. PubMed
Miller BE, Mayer RJ, Goyal N, Bal J, Dallow N, Boyce M, Carpenter D, Churchill A, Heslop T & Lazaar AL (2017) Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660). Br J Clin Pharmacol 83, 2813–2820. PubMed PMC
Palmér R, Mäenpää J, Jauhiainen A, Larsson B, Mo J, Russell M, Root J, Prothon S, Chialda L, Forte P et al (2018) Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure‐dependent reduction in neutrophil elastase activity in healthy subjects. Clin Pharmacol Ther 104, 1155–1164. PubMed PMC
Klemba M, Gluzman I & Goldberg DE (2004) A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J Biol Chem 279, 43000–43007. PubMed
Lehmann C, Tan MSY, de Vries LE, Russo I, Sanchez MI, Goldberg DE & Deu E (2018) Plasmodium falciparum dipeptidyl aminopeptidase 3 activity is important for efficient erythrocyte invasion by the malaria parasite. PLoS Pathog 14, e1007031. PubMed PMC
Lin J‐W, Spaccapelo R, Schwarzer E, Sajid M, Annoura T, Deroost K, Ravelli RBG, Aime E, Capuccini B, Mommaas‐Kienhuis AM et al (2015) Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance. J Exp Med 212, 893–903. PubMed PMC
Capuccini B, Lin J, Talavera‐López C, Khan SM, Sodenkamp J, Spaccapelo R & Langhorne J (2016) Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria. Sci Rep 6, 39258. PubMed PMC
Schwach F, Bushell E, Gomes AR, Anar B, Girling G, Herd C, Rayner JC & Billker O (2015) PlasmoGEM, a database supporting a community resource for large‐scale experimental genetics in malaria parasites. Nucleic Acids Res 43, D1176–D1182. PubMed PMC
Deu E, Leyva MJ, Albrow VE, Rice MJ, Ellman JA & Bogyo M (2010) Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes. Chem Biol 17, 808–819. PubMed PMC
Arastu‐Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F, Fonović M, Grainger M, Phillips CI, Powers JC & Bogyo M (2008) Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 4, 203–213. PubMed
Suárez‐Cortés P, Sharma V, Bertuccini L, Costa G, Bannerman N‐L, Sannella AR, Williamson K, Klemba M, Levashina EA, Lasonder E et al (2016) Comparative proteomics and functional analysis reveal a role of Plasmodium falciparum osmiophilic bodies in malaria parasite transmission. Mol Cell Proteomics 15, 3243–3255. PubMed PMC
Tanaka TQ, Deu E, Molina‐Cruz A, Ashburne MJ, Ali O, Suri A, Kortagere S, Bogyo M & Williamson KC (2013) Plasmodium dipeptidyl aminopeptidases as malaria transmission‐blocking drug targets. Antimicrob Agents Chemother 57, 4645–4652. PubMed PMC
Schechter I & Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Comm 27, 157–162. PubMed
Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia‐Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272, 17907–17911. PubMed
Rano TA, Timkey T, Peterson EP, Rotonda J, Nicholson DW, Becker JW, Chapman KT & Thornberry NA (1997) A combinatorial approach for determining protease specificities: application to interleukin‐1beta converting enzyme (ICE). Chem Biol 4, 149–155. PubMed
Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA & Craik CS (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci USA 97, 7754–7759. PubMed PMC
Drag M, Bogyo M, Ellman JA & Salvesen GS (2010) Aminopeptidase fingerprints, an integrated approach for identification of good substrates and optimal inhibitors. J Biol Chem 285, 3310–3318. PubMed PMC
Poreba M, McGowan S, Skinner‐Adams TS, Trenholme KR, Gardiner DL, Whisstock JC, To J, Salvesen GS, Dalton JP & Drag M (2012) Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum . PLoS ONE 7, e31938‐8. PubMed PMC
Poreba M, Mihelic M, Krai P, Rajkovic J, Krezel A, Pawelczak M, Klemba M, Turk D, Turk B, Latajka R et al (2014) Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C. Amino Acids 46, 931–943. PubMed PMC
Nazif T & Bogyo M (2001) Global analysis of proteasomal substrate specificity using positional‐scanning libraries of covalent inhibitors. Proc Natl Acad Sci USA 98, 2967–2972. PubMed PMC
Greenbaum DC, Arnold WD, Lu F, Hayrapetian L, Baruch A, Krumrine J, Toba S, Chehade K, Brömme D, Kuntz ID et al (2002) Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem Biol 9, 1085–1094. PubMed
Kasperkiewicz P, Poreba M, Snipas SJ, Parker H, Winterbourn CC, Salvesen GS & Drag M (2014) Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proc Natl Acad Sci USA 111, 2518–2523. PubMed PMC
Kasperkiewicz P, Poreba M, Groborz K & Drag M (2017) Emerging challenges in the design of selective substrates, inhibitors and activity‐based probes for indistinguishable proteases. FEBS J 284, 1518–1539. PubMed PMC
Poreba M, Salvesen GS & Drag M (2017) Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nat Protoc 12, 2189–2214. PubMed
Wang F, Krai P, Deu E, Bibb B, Lauritzen C, Pedersen J, Bogyo M & Klemba M (2011) Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem Parasitol 175, 10–20. PubMed PMC
Deu E, Yang Z, Wang F, Klemba M & Bogyo M (2010) Use of activity‐based probes to develop high throughput screening assays that can be performed in complex cell extracts. PLoS ONE 5, e11985. PubMed PMC
Mahajan SS, Deu E, Lauterwasser EMW, Leyva MJ, Ellman JA, Bogyo M & Renslo AR (2011) A fragmenting hybrid approach for targeted delivery of multiple therapeutic agents to the malaria parasite. ChemMedChem 6, 415–419. PubMed PMC
Sanman LE & Bogyo M (2014) Activity‐based profiling of proteases. Annu Rev Biochem 83, 249–273. PubMed
Yuan F, Verhelst SHL, Blum G, Coussens LM & Bogyo M (2006) A selective activity‐based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J Am Chem Soc 128, 5616–5617. PubMed
Sijwali PS, Koo J, Singh N & Rosenthal PJ (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum . Mol Biochem Parasitol 150, 96–106. PubMed
Sijwali PS, Kato K, Seydel KB, Gut J, Lehman J, Klemba M, Goldberg DE, Miller LH & Rosenthal PJ (2004) Plasmodium falciparum cysteine protease falcipain‐1 is not essential in erythrocytic stage malaria parasites. Proc Natl Acad Sci USA 101, 8721–8726. PubMed PMC
Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, DeRisi J, Holder AA & Bogyo M (2002) A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006. PubMed
Deu E (2017) Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 284, 2604–2628. PubMed PMC
Methot N, Guay D, Rubin J, Ethier D, Ortega K, Wong S, Normandin D, Beaulieu C, Reddy TJ, Riendeau D et al (2008) In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C. Mol Pharmacol 73, 1857–1865. PubMed
Poreba M, Groborz K, Navarro M, Snipas SJ, Drag M & Salvesen GS (2018) Caspase selective reagents for diagnosing apoptotic mechanisms. Cell Death Differ 9, 231. PubMed PMC
Li H, O'Donoghue AJ, van der Linden WA, Xie SC, Yoo E, Foe IT, Tilley L, Craik CS, da Fonseca PCA & Bogyo M (2016) Structure‐ and function‐based design of Plasmodium‐selective proteasome inhibitors. Nature 530, 233–236. PubMed PMC
Rut W, Zhang L, Kasperkiewicz P, Poreba M, Hilgenfeld R & Drag M (2017) Extended substrate specificity and first potent irreversible inhibitor/activity‐based probe design for Zika virus NS2B‐NS3 protease. Antiviral Res 139, 88–94. PubMed
Borodovsky A, Ovaa H, Kolli N, Gan‐Erdene T, Wilkinson KD, Ploegh HL & Kessler BM (2002) Chemistry‐based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9, 1149–1159. PubMed
Schneck JL, Villa JP, McDevitt P, McQueney MS, Thrall SH & Meek TD (2008) Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady‐state and pre‐steady‐state solvent kinetic isotope effects. Biochemistry 47, 8697–8710. PubMed
Rubach JK, Cui G, Schneck JL, Taylor AN, Zhao B, Smallwood A, Nevins N, Wisnoski D, Thrall SH & Meek TD (2012) The amino‐acid substituents of dipeptide substrates of cathepsin C can determine the rate‐limiting steps of catalysis. Biochemistry 51, 7551–7568. PubMed
Berger AB, Sexton KB & Bogyo M (2006) Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 16, 961–963. PubMed
Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA & Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281, 12824–12832. PubMed
Gruba N, Rodriguez Martinez JI, Grzywa R, Wysocka M, Skoreński M, Burmistrz M, Łęcka M, Lesner A, Sieńczyk M & Pyrć K (2016) Substrate profiling of Zika virus NS2B‐NS3 protease. FEBS Lett 590, 3459–3468. PubMed
Poreba M, Szalek A, Kasperkiewicz P & Drag M (2014) Positional scanning substrate combinatorial library (PS‐SCL) approach to define caspase substrate specificity. Methods Mol Biol 1133, 41–59. PubMed
Yang P‐Y, Wang M, He CY & Yao SQ (2012) Proteomic profiling and potential cellular target identification of K11777, a clinical cysteine protease inhibitor, in Trypanosoma brucei . Chem Commun 48, 835–837. PubMed
Mycek MJ (1970) Cathepsins. Methods Enzymol 19, 285–315.
Horn M, Baudys M, Voburka Z, Kluh I, Vondrášek J & Mareš M (2002) Free‐thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I). Protein Sci 11, 933–943. PubMed PMC
Morrison JF & Walsh CT (1988) The behavior and significance of slow‐binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61, 201–301. PubMed
Collins CR, Hackett F, Strath M, Penzo M, Withers‐Martinez C, Baker DA & Blackman MJ (2013) Malaria parasite cGMP‐dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog 9, e1003344. PubMed PMC